Numerical Analysis Preliminary Examination Spring 2023

January 8, 2023

Problem 1. (20 points)

Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and let $\|\cdot\|_F$ denote the Frobenius norm on \mathbb{R}^n defined by

$$||B||_F^2 = \sum_{i,j=1}^n B_{ij}^2.$$

Given two integers $1 \le p < q \le n$ and an angle θ , let $c = \cos \theta$ and $s = \sin \theta$ and consider the matrix $G = G(p, q, \theta)$ for which

$$G_{kk} = 1$$
 $k \neq p, q$ $G_{ij} = 0$ $i \neq j$ and $(i, j) \neq (p, q)$ or (q, p) $G_{pp} = c$ $G_{qq} = c$ $G_{qp} = s$

This matrix is shown below.

$$G = G(p, q, \theta) = egin{bmatrix} 1 & & & & & & \\ & 1 & & & & & \\ & & \ddots & & & & \\ & & c & \dots & -s & & \\ & & \vdots & \ddots & \vdots & & \\ & & s & \dots & c & & \\ & & & \ddots & & \\ & & & & 1 & \\ & & & & 1 \end{bmatrix}$$

Consider the matrix $B = G^T A G$. Notice, if $i, j \neq p, q$ then $B_{ij} = A_{ij}$, if $i \neq p, q$ then

$$B_{ip} = cA_{ip} + sA_{iq}$$

$$B_{iq} = -sA_{ip} + cA_{iq}$$

if $j \neq p, q$ then

$$B_{pj} = cA_{pj} + sA_{qj}$$

$$B_{qj} = -sA_{pj} + cA_{qj},$$

and

$$B_{pp} = c^{2}A_{pp} + 2csA_{pq} + s^{2}A_{qq}$$

$$B_{pq} = B_{qp} = (c^{2} - s^{2})A_{pq} + cs(-A_{pp} + A_{qq})$$

$$B_{qq} = c^{2}A_{qq} - 2csA_{pq} + s^{2}A_{pp}.$$

Jacobi's iterative method for finding the eigenvalues of A starts with the matrix $A^{(0)} = A$. For k = 1, 2, ..., values of $p_k < q_k$ and θ_k are chosen and the matrix $A^{(k)} = G^T A^{(k-1)} G$ is constructed.

- (a) (5 points) Show that, for all k, $A^{(k)}$ is symmetric, $||A^{(k)}||_F^2 = ||A||_F^2$, and the eigenvalues of $A^{(k)}$ are the same as the eigenvalues of A.
- (b) (5 points) Given values of p_k and q_k , find a value of θ_k so that $A_{p_kq_k}^{(k)} = 0$.
- (c) (5 points) Let $A^{(k)} = D^{(k)} + E^{(k)}$ where $D^{(k)}$ is diagonal and $E^{(k)}$ has zeros on the diagonal. If θ_k is chosen as in part (b) then it is a straightforward calculation to see that

$$||E^{(k)}||_F^2 = ||E^{(k-1)}||_F^2 - 2\left(A_{p_kq_k}^{(k-1)}\right)^2.$$

(You do not need to show this.) Show that $p_k < q_k$ can be chosen at each stage so that

$$||E^{(k)}||_F^2 \le \left(1 - \frac{2}{n^2}\right)^k ||E^{(0)}||_F^2.$$

(d) (5 points) Let $\varepsilon > 0$ be given. Show there exists K such that for all $k \geq K$, every eigenvalue of A lies within ε of a diagonal element of $A^{(k)}$ and every diagonal element of $A^{(k)}$ lies within ε of an eigenvalue of A.

Problem 2. (20 points)

(a) (5 points) Suppose $B \in \mathbb{R}^{n \times n}$ and consider the sequence defined by

$$x^{(k+1)} = Bx^{(k)} + d$$

where $d \in \mathbb{R}^n$. Show the sequence converges for all d and all $x^{(1)}$ to a limit that is independent of $x^{(1)}$ if and only if $B^k \to 0$. Hint. Show that the matrix I - B is invertible if $B^k \to 0$.

(b) (5 points) Suppose $B \in \mathbb{R}^{n \times n}$. Show that B^k converges to zero as k goes to infinity is equivalent to the spectral radius of B being less than 1. Hint. Write $SBS^{-1} = J$, where J is the Jordan form of B:

$$J = \begin{bmatrix} J_1 & & & & \\ & J_2 & & & \\ & & \ddots & & \\ & & & J_r \end{bmatrix} \quad \text{where} \quad J_i = \begin{bmatrix} \lambda_i & 1 & & & \\ & \lambda i & 1 & & \\ & & \ddots & 1 & \\ & & & \lambda_i \end{bmatrix}.$$

Also, write $J_i = \lambda_i I + N$ where N is a nilpotent matrix and use the binomial theorem on J_i .

(c) (5 points) Let Ax = b, where $A \in \mathbb{R}^{n \times n}$ is a non singular matrix. Use (b) to show that if A is strictly row diagonally dominant then the Jacobi method converges for any arbitrary choice of the initial value $x^{(1)}$. Hint: Recall that, for any induced norm, $\rho(B) \leq ||B||$ where $\rho(B)$ denotes the spectral radius of B.

(d) (5 points) Let

$$A = \begin{bmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 7 \\ 7 \\ 7 \end{bmatrix}.$$

Apply two iterations of the Jacobi method to the system Ax = b starting at $x^{(1)} = (0, 0, 0)^T$.

Problem 3. (20 points)

For n=1,2,..., let $\{\varphi_{j}^{n}\}_{j=0}^{n}\subset C[0,1]$ be given by $\varphi_{0}^{n}(x)=1-nx$ if $x\in[0,\frac{1}{n}],\ \varphi_{0}^{n}(x)=0$ otherwise, $\varphi_{n}^{n}(x)=nx-n+1$ if $x\in[\frac{n-1}{n},1],\ \varphi_{n}^{n}(x)=0$ otherwise, and for j=1,2,...,n-1, $\varphi_{j}^{n}(x)=nx-j+1$ if $x\in[\frac{j-1}{n},\frac{j}{n}],\ \varphi_{j}^{n}(x)=j+1-nx$ if $x\in[\frac{j}{n},\frac{j+1}{n}],\ \varphi_{j}^{n}(x)=0$ otherwise.

- (a) (2 points) Sketch the graphs of φ_i^n for j = 0, 1, 2, ..., n
- (b) (4 points) Compute the Gramian matrix, M^n , considered as vectors in $L_2(0,1)$, $M^n_{i,j} = \langle \varphi^n_i, \varphi^n_j \rangle_{L_2(0,1)}$ of $\{\varphi^n_j\}_{j=0}^n$.
- (c) (3 points) Let $S = \text{span}\{\varphi_j^n\}_{j=0}^n$ and use part (b) to argue that $\{\varphi_j^n\}_{j=0}^n$ is in fact a basis for the subspace $S \subset L_2(0,1)$.
- (d) (3 points) Let $\varphi \in C[0,1]$ be given and find an expression for $I^n \varphi \in S$, where I^n denotes the interpolation operator on C[0,1] with respect to the mesh $\{0,\frac{1}{n},\frac{2}{n},...,\frac{n-1}{n},1\}$ on [0,1]; that is, $(I^n \varphi)(\frac{j}{n}) = \varphi(\frac{j}{n}), j = 0,1,2,...,n$.
- (e) (3 points) Let $\varphi \in L_2(0,1)$ be given and let P^n be the orthogonal projection of $L_2(0,1)$ onto S. Then $P^n\varphi = \sum_{j=0}^n b_j \varphi_j^n \in S$, for some $\mathbf{b} = [b_0, b_1, ..., b_n]^T \in \mathbb{R}^{n+1}$. What is (i.e. compute or provide an expression for) \mathbf{b} ?
- (f) (2 points) Given that for $\varphi \in C^2(0,1)$, $||I^n \varphi \varphi||_{L_2(0,1)} \leq \frac{K_0}{n^2} ||D^2 \varphi||_{L_2(0,1)}$ for some constant K_0 , argue that $||P^n \varphi \varphi||_{L_2(0,1)}$ is also $O(\frac{1}{n^2})$ for $\varphi \in C^2(0,1)$.
- (g) (3 points) Use (1) the fact that for $\varphi \in C^2(0,1)$, $||DI^n\varphi D\varphi||_{L_2(0,1)} \leq \frac{K_0}{n} ||D^2\varphi||_{L_2(0,1)}$, (2) Part (f) above, and (3) the Schmidt inequality which states that

$$\int_{a}^{b} |Dp_{k}(x)|^{2} dx \leq \frac{C_{k}}{(b-a)^{2}} \int_{a}^{b} |p_{k}(x)|^{2} dx, \quad k = 1, 2, 3, or$$

where p_k is a polynomial of degree k and C_k is a constant that depends only on k, and not on a, b or p_k to argue that $||DP^n\varphi - D\varphi||_{L_2(0,1)}$ is also $O(\frac{1}{n})$ for $\varphi \in C^2(0,1)$. Note: D denotes the differentiation operator, $D = \frac{d}{dx}$. (Hint: Use the fact that $\int_0^1 = \sum_{j=1}^n \int_{\frac{j-1}{n}}^{\frac{j}{n}}$ and the triangle inequality and consider $||DP^n\varphi - DI^n\varphi||_{L_2(0,1)}$.)