Numerical Analysis Preliminary Examination Spring 2023

January 8, 2023

Problem 1. (20 points)
Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and let $\|\cdot\|_{F}$ denote the Frobenius norm on \mathbb{R}^{n} defined by

$$
\|B\|_{F}^{2}=\sum_{i, j=1}^{n} B_{i j}^{2}
$$

Given two integers $1 \leq p<q \leq n$ and an angle θ, let $c=\cos \theta$ and $s=\sin \theta$ and consider the matrix $G=G(p, q, \theta)$ for which

$$
\begin{array}{ll}
G_{k k}=1 \quad k \neq p, q & G_{i j}=0 \quad i \neq j \text { and }(i, j) \neq(p, q) \text { or }(q, p) \\
G_{p p}=c & G_{p q}=-s \\
G_{q q}=c & G_{q p}=s
\end{array}
$$

This matrix is shown below.

$$
G=G(p, q, \theta)=\left[\begin{array}{ccccccccc}
1 & & & & & & & & \\
& 1 & & & & & & & \\
& & \ddots & & & & & & \\
& & & c & \ldots & -s & & & \\
& & & \vdots & \ddots & \vdots & & & \\
& & & s & \ldots & c & & & \\
& & & & & & \ddots & & \\
& & & & & & & 1 & \\
& & & & & & & & 1
\end{array}\right]
$$

Consider the matrix $B=G^{T} A G$. Notice, if $i, j \neq p, q$ then $B_{i j}=A_{i j}$, if $i \neq p, q$ then

$$
\begin{aligned}
& B_{i p}=c A_{i p}+s A_{i q} \\
& B_{i q}=-s A_{i p}+c A_{i q},
\end{aligned}
$$

if $j \neq p, q$ then

$$
\begin{aligned}
& B_{p j}=c A_{p j}+s A_{q j} \\
& B_{q j}=-s A_{p j}+c A_{q j},
\end{aligned}
$$

and

$$
\begin{aligned}
& B_{p p}=c^{2} A_{p p}+2 c s A_{p q}+s^{2} A_{q q} \\
& B_{p q}=B_{q p}=\left(c^{2}-s^{2}\right) A_{p q}+c s\left(-A_{p p}+A_{q q}\right) \\
& B_{q q}=c^{2} A_{q q}-2 c s A_{p q}+s^{2} A_{p p} .
\end{aligned}
$$

Jacobi's iterative method for finding the eigenvalues of A starts with the matrix $A^{(0)}=A$. For $k=1,2, \ldots$, values of $p_{k}<q_{k}$ and θ_{k} are chosen and the matrix $A^{(k)}=G^{T} A^{(k-1)} G$ is constructed.
(a) (5 points) Show that, for all $k, A^{(k)}$ is symmetric, $\left\|A^{(k)}\right\|_{F}^{2}=\|A\|_{F}^{2}$, and the eigenvalues of $A^{(k)}$ are the same as the eigenvalues of A.
(b) (5 points) Given values of p_{k} and q_{k}, find a value of θ_{k} so that $A_{p_{k} q_{k}}^{(k)}=0$.
(c) (5 points) Let $A^{(k)}=D^{(k)}+E^{(k)}$ where $D^{(k)}$ is diagonal and $E^{(k)}$ has zeros on the diagonal. If θ_{k} is chosen as in part (b) then it is a straightforward calculation to see that

$$
\left\|E^{(k)}\right\|_{F}^{2}=\left\|E^{(k-1)}\right\|_{F}^{2}-2\left(A_{p_{k} q_{k}}^{(k-1)}\right)^{2} .
$$

(You do not need to show this.) Show that $p_{k}<q_{k}$ can be chosen at each stage so that

$$
\left\|E^{(k)}\right\|_{F}^{2} \leq\left(1-\frac{2}{n^{2}}\right)^{k}\left\|E^{(0)}\right\|_{F}^{2}
$$

(d) (5 points) Let $\varepsilon>0$ be given. Show there exists K such that for all $k \geq K$, every eigenvalue of A lies within ε of a diagonal element of $A^{(k)}$ and every diagonal element of $A^{(k)}$ lies within ε of an eigenvalue of A.

Problem 2. (20 points)
(a) (5 points) Suppose $B \in \mathbb{R}^{n \times n}$ and consider the sequence defined by

$$
x^{(k+1)}=B x^{(k)}+d
$$

where $d \in \mathbb{R}^{n}$. Show the sequence converges for all d and all $x^{(1)}$ to a limit that is independent of $x^{(1)}$ if and only if $B^{k} \rightarrow 0$. Hint. Show that the matrix $I-B$ is invertible if $B^{k} \rightarrow 0$.
(b) (5 points) Suppose $B \in \mathbb{R}^{n \times n}$. Show that B^{k} converges to zero as k goes to infinity is equivalent to the spectral radius of B being less than 1. Hint. Write $S B S^{-1}=J$, where J is the Jordan form of B :

$$
J=\left[\begin{array}{cccc}
J_{1} & & & \\
& J_{2} & & \\
& & \ddots & \\
& & & J_{r}
\end{array}\right] \quad \text { where } \quad J_{i}=\left[\begin{array}{cccc}
\lambda_{i} & 1 & & \\
& \lambda i & 1 & \\
& & \ddots & 1 \\
& & & \lambda_{i}
\end{array}\right]
$$

Also, write $J_{i}=\lambda_{i} I+N$ where N is a nilpotent matrix and use the binomial theorem on J_{i}.
(c) (5 points) Let $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is a non singular matrix. Use (b) to show that if A is strictly row diagonally dominant then the Jacobi method converges for any arbitrary choice of the initial value $x^{(1)}$. Hint: Recall that, for any induced norm, $\rho(B) \leq\|B\|$ where $\rho(B)$ denotes the spectral radius of B.
(d) (5 points) Let

$$
A=\left[\begin{array}{ccc}
5 & 1 & 1 \\
1 & 5 & 1 \\
1 & 1 & 5
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
7 \\
7 \\
7
\end{array}\right] .
$$

Apply two iterations of the Jacobi method to the system $A x=b$ starting at $x^{(1)}=(0,0,0)^{T}$.

Problem 3. (20 points)
For $n=1,2, \ldots$, let $\left\{\varphi_{j}^{n}\right\}_{j=0}^{n} \subset C[0,1]$ be given by $\varphi_{0}^{n}(x)=1-n x$ if $x \in\left[0, \frac{1}{n}\right], \varphi_{0}^{n}(x)=0$ otherwise, $\varphi_{n}^{n}(x)=n x-n+1$ if $x \in\left[\frac{n-1}{n}, 1\right], \varphi_{n}^{n}(x)=0$ otherwise, and for $j=1,2, \ldots, n-1$, $\varphi_{j}^{n}(x)=n x-j+1$ if $x \in\left[\frac{j-1}{n}, \frac{j}{n}\right], \varphi_{j}^{n}(x)=j+1-n x$ if $x \in\left[\frac{j}{n}, \frac{j+1}{n}\right], \varphi_{j}^{n}(x)=0$ otherwise.
(a) (2 points) Sketch the graphs of φ_{j}^{n} for $j=0,1,2, \ldots, n$
(b) (4 points) Compute the Gramian matrix, M^{n}, considered as vectors in $L_{2}(0,1), M_{i, j}^{n}=$ $\left\langle\varphi_{i}^{n}, \varphi_{j}^{n}\right\rangle_{L_{2}(0,1)}$ of $\left\{\varphi_{j}^{n}\right\}_{j=0}^{n}$.
(c) (3 points) Let $S=\operatorname{span}\left\{\varphi_{j}^{n}\right\}_{j=0}^{n}$ and use part (b) to argue that $\left\{\varphi_{j}^{n}\right\}_{j=0}^{n}$ is in fact a basis for the subspace $S \subset L_{2}(0,1)$.
(d) (3 points) Let $\varphi \in C[0,1]$ be given and find an expression for $I^{n} \varphi \in S$, where I^{n} denotes the interpolation operator on $C[0,1]$ with respect to the mesh $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}, 1\right\}$ on $[0,1]$; that is, $\left(I^{n} \varphi\right)\left(\frac{j}{n}\right)=\varphi\left(\frac{j}{n}\right), j=0,1,2, \ldots, n$.
(e) (3 points) Let $\varphi \in L_{2}(0,1)$ be given and let P^{n} be the orthogonal projection of $L_{2}(0,1)$ onto S. Then $P^{n} \varphi=\sum_{j=0}^{n} b_{j} \varphi_{j}^{n} \in S$, for some $\mathbf{b}=\left[b_{0}, b_{1}, \ldots, b_{n}\right]^{T} \in \mathbb{R}^{n+1}$. What is (i.e. compute or provide an expression for) \mathbf{b} ?
(f) (2 points) Given that for $\varphi \in C^{2}(0,1),\left\|I^{n} \varphi-\varphi\right\|_{L_{2}(0,1)} \leq \frac{K_{0}}{n^{2}}\left\|D^{2} \varphi\right\|_{L_{2}(0,1)}$ for some constant K_{0}, argue that $\left\|P^{n} \varphi-\varphi\right\|_{L_{2}(0,1)}$ is also $O\left(\frac{1}{n^{2}}\right)$ for $\varphi \in C^{2}(0,1)$.
(g) (3 points) Use (1) the fact that for $\varphi \in C^{2}(0,1),\left\|D I^{n} \varphi-D \varphi\right\|_{L_{2}(0,1)} \leq \frac{K_{0}}{n}\left\|D^{2} \varphi\right\|_{L_{2}(0,1)}$, (2) Part (f) above, and (3) the Schmidt inequality which states that

$$
\int_{a}^{b}\left|D p_{k}(x)\right|^{2} d x \leq \frac{C_{k}}{(b-a)^{2}} \int_{a}^{b}\left|p_{k}(x)\right|^{2} d x, \quad k=1,2,3, \text { or }
$$

where p_{k} is a polynomial of degree k and C_{k} is a constant that depends only on k, and not on a, b or p_{k} to argue that $\left\|D P^{n} \varphi-D \varphi\right\|_{L_{2}(0,1)}$ is also $O\left(\frac{1}{n}\right)$ for $\varphi \in C^{2}(0,1)$. Note: D denotes the differentiation operator, $D=\frac{d}{d x}$. (Hint: Use the fact that $\int_{0}^{1}=\sum_{j=1}^{n} \int_{\frac{j-1}{n}}^{\frac{j}{n}}$ and the triangle inequality and consider $\left\|D P^{n} \varphi-D I^{n} \varphi\right\|_{L_{2}(0,1)}$.)

