Fall 2008 Math 541b Exam

1. Let X_{1}, \ldots, X_{n} be i.i.d. from a normal distribution with unknown mean μ and known variance 1. Suppose that negative values of X_{i} are truncated at 0 , so that instead of X_{i} we actually observe

$$
Y_{i}=\max \left\{0, X_{i}\right\}, \quad i=1, \ldots, n
$$

from which we would like to estimate μ.
(a) Explain how to use the EM algorithm to estimate μ from Y_{1}, \ldots, Y_{n}. Specifically, give the complete \log-likelihood function $\log L_{c}(\mu)$ (i.e., the log of the joint density of X_{1}, \ldots, X_{n}) and a recursive formula for the successive EM estimates $\mu^{(k+1)}$. Write these in terms of the density ϕ and c.d.f. Φ of the standard normal distribution. Hint: To simplify things, assume that X_{1}, \ldots, X_{m} are not truncated, and X_{m+1}, \ldots, X_{n} are.
(b) Find the partial \log-likelihood function $\log L(\mu)$ (i.e., the \log of the joint density of Y_{1}, \ldots, Y_{n}) and use it to write down a (nonlinear) equation which the MLE $\widehat{\mu}$ satisfies. Use this equation to manually verify that $\widehat{\mu}$ is indeed a fixed point of the recursion found in (a).
2. Let f denote the true density function of X, and consider testing the simple hypotheses

$$
H_{0}: f=f_{0} \quad \text { vs. } \quad H_{1}: f=f_{1}
$$

for given densities f_{0}, f_{1}. For a fixed value $\pi \in(0,1)$, suppose that the probabilities $\pi_{0}=\pi$ and $\pi_{1}=1-\pi$ can be assigned to H_{0} and H_{1} prior to the experiment. We will describe tests of H_{0} vs. H_{1} by their indicator functions

$$
\psi(X)= \begin{cases}1, & \text { the test rejects } H_{0} \\ 0, & \text { the test accepts } H_{0}\end{cases}
$$

(a) Show that the overall probability of an error resulting from using a test ψ is

$$
\begin{equation*}
\pi E_{0} \psi(X)+(1-\pi) E_{1}[1-\psi(X)] \tag{1}
\end{equation*}
$$

(b) Call the test ψ^{*} minimizing (1) the Bayes optimal test. By writing (1) as a single E_{0} expectation using the "change of measure" technique

$$
E_{1}(\cdot)=E_{0}\left[(\cdot) \frac{f_{1}(X)}{f_{0}(X)}\right]
$$

show that the Bayes optimal test is equivalent to a simple likelihood ratio test. Also, give the value of the likelihood ratio test's critical value.
(c) Argue that the Bayes optimal test is hence most powerful for detecting f_{1} at a certain significance level. Write down an expression for this significance level, and also give an upper bound for it as a function of π.
(d) The posterior probability of H_{i} is the conditional probability that H_{i} is true, given $X=x$. Show that the posterior probability of H_{i} is

$$
\begin{equation*}
\frac{\pi_{i} f_{i}(x)}{\pi_{0} f_{0}(x)+\pi_{1} f_{1}(x)} . \tag{2}
\end{equation*}
$$

Show that the Bayes optimal test is also equivalent to choosing which hypothesis has the larger posterior probability.

