Fall 2007 Math 541a Exam

1. (a) Show that for all $\alpha > 0, \beta > 0$

$$G(x; \alpha, \beta) = e^{-\beta e^{-\alpha x}}$$
 for $x \in \mathbf{R}$

is a distribution function (Gumbel family), and find its density and moment generating function.

- (b) Is $G(x; \alpha, \beta)$ is a member of the exponential family? Find sufficient statistics for X_1, \ldots, X_n , an i.i.d. sample from $G(x; \alpha, \beta)$.
- (c) Let X_1, X_2, \ldots be independent and identically distributed random variables with distribution function F(x). Find the distribution function of

$$X_{(n)} = \max_{1 \le i \le n} X_i$$
 and $X_{(1)} = \min_{1 \le i \le n} X_i$.

- (d) Let G_1, \ldots, G_n be i.i.d. with distribution $G(x; \alpha, \beta)$ for some positive α and β . Show that the largest variable $G_{(n)} = \max_{1 \le i \le n} G_i$ is of the same family, and determine its parameters.
- (e) Taking the distribution

$$F(x) = 1 - e^{-\lambda x}$$
 for $x \ge 0$

in part a, find a sequence b_n such that $X_{(n)} - b_n$ converges to the Gumbel distribution as $n \to \infty$, and determine the parameters of the limit distribution.

- 2. Let (X_i, Y_i) , $i = 1, \dots, n$ be independent where X_i has an exponential distribution $\mathcal{E}(\lambda_i)$ with density $p(x, \lambda_i) = \lambda_i e^{-\lambda_i x}$, x > 0, and Y_i is independent of X_i with the exponential distribution $\mathcal{E}(\theta \lambda_i)$, $\theta > 0$.
 - (a) Show that the maximum likelihood estimates of $(\lambda_1, \dots, \lambda_n, \theta)$ are

$$\hat{\lambda}_i = \frac{2}{X_i + \hat{\theta}Y_i}, \quad , i = 1, \cdots, n$$

and $\hat{\theta}$, which uniquely solves $g(\theta) = 0$ where

$$g(\theta) = \frac{1}{n} \sum \left(\frac{X_i}{X_i + \theta Y_i} - \frac{1}{2} \right).$$

- (b) Show that the Fisher information bound for θ under the assumption that $\lambda_1, \cdots, \lambda_n$ are known is θ^2/n
- (c) Show that $U_i = X_i/(X_i + \theta Y_i)$, $i = 1, \dots, n$ are independent uniform $\mathcal{U}(0, 1)$.
- (d) Now suppose $\hat{\theta} \xrightarrow{p} \theta$. Show that

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}(0, 3\theta^2)$$

by using the Taylor expansion

$$g(\hat{\theta}) = g(\theta) + g'(\theta)(\hat{\theta} - \theta) + o_p(\hat{\theta} - \theta).$$