1. Let X_1, \ldots, X_{n_1} be i.i.d. $N(\mu_1, \sigma_1^2)$ and Y_1, \ldots, Y_{n_2} i.i.d. $N(\mu_2, \sigma_2^2)$, where $\mu_1, \mu_2, \sigma_1, \sigma_2$ are all unknown and σ_1, σ_2 are not necessarily assumed to be equal. This problem concerns the generalized likelihood ratio (GLR) test of

$$H_0: \mu_1 = \mu_2$$
 vs. $H_1: \mu_1 \neq \mu_2$.

(a) Letting $L(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2)$ be the log of the likelihood function of $(X_1, \ldots, X_{n_1}, Y_1, \ldots, Y_{n_2})$, find the (unrestricted) maximum likelihood estimates (MLEs) $\hat{\mu}_1, \hat{\mu}_2, \hat{\sigma}_1^2, \hat{\sigma}_2^2$ and write down

$$L(\widehat{\mu}_1, \widehat{\mu}_2, \widehat{\sigma}_1^2, \widehat{\sigma}_2^2)$$

in as simple form as possible.

- (b) For the H_0 -restricted MLEs $\hat{\mu}, \hat{\sigma}_1^2, \hat{\sigma}_2^2,$
 - i. Write down formulas for $\hat{\sigma}_i^2$ as functions of $\hat{\sigma}_i^2$ and $\hat{\hat{\mu}}$,
 - ii. Find a cubic equation, not depending explicitly on $\hat{\hat{\sigma}}_i$, that $\hat{\hat{\mu}}$ satisfies. You do not need to solve this equation.
- (c) Give the asymptotic distribution of the GLR statistic under H_0 , as $n_1, n_2 \to \infty$.
- 2. Let $\hat{\theta}_n$ be a parameter estimate computed from the random sample X_1, \ldots, X_n , let $\hat{\theta}_{(i)}$ be the estimate computed from

$$X_1,\ldots,X_{i-1},X_{i+1},\ldots,X_n$$

and let

$$\widehat{\theta}_{(\cdot)} = \frac{1}{n} \sum_{i=1}^{n} \widehat{\theta}_{(i)}$$

Recall that the Jackknife estimate of the bias of $\hat{\theta}$ is given by

$$b_{JACK} = (n-1)(\widehat{\theta}_{(\cdot)} - \widehat{\theta}_n).$$

Now let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of the sample, which we assume are from a continuous distribution. The sample median \hat{m}_n is

$$\widehat{m}_n = \begin{cases} X_{((n+1)/2)}, & n \text{ odd} \\ (X_{(n/2)} + X_{((n/2)+1)})/2, & n \text{ even.} \end{cases}$$

- (a) Compute the jackknife estimate of bias b_{JACK} for the sample median \widehat{m}_n in both cases.
- (b) Let b denote the true bias of \hat{m}_n . Is b_{JACK} always unbiased for b in the even case?