Geometry/Topology Qualifying Exam

Spring 2009

Solve all SIX problems. Partial credit will be given to partial solutions.

1. Let $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ be the unit sphere in \mathbb{R}^{3}. Prove that the map

$$
f: S^{2} \rightarrow \mathbb{R}^{4}, f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}^{2}-x_{2}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{3}\right)
$$

is an immersion and that $f\left(S^{2}\right)$ is diffeomorphic to the projective plane $\mathbb{R} \mathbb{P}^{2}$.
2. Let ω be a closed n-form on $\mathbb{R}^{n+1}-\{0\}$. Prove that ω is exact if and only if $\int_{S^{n}} \omega=0$, where S^{n} is the unit sphere in \mathbb{R}^{n+1}.
3. Find all vector fields Z on \mathbb{R}^{2} which satisfy $[X, Z]=0$ and $[Y, Z]=0$, where $X=e^{x} \frac{\partial}{\partial x}$ and $Y=\frac{\partial}{\partial y}$ are vector fields defined on all of \mathbb{R}^{2}.
4. Compute $\pi_{n}\left(T^{p}\right)$ for all $n \geq 1$, where $T^{p}=S^{1} \times \cdots \times S^{1}$ (p times) is the p-dimensional torus.
5. Compute $\pi_{1}\left(\mathbb{R}^{3}-K\right)$, where $K \subset \mathbb{R}^{3}$ is the union of the vertical axis $\{x=0, y=0\}$ and the unit circle $\left\{x^{2}+y^{2}=1, z=0\right\}$.
6. Let X be a compact, oriented surface of genus 2 (without boundary), and let A be a simple closed curve which separates the surface X into two punctured tori, as given in Figure 1 below. Then compute the relative homology groups $H_{n}(X, A)$ for all $n \geq 0$.

Figure 1

