## **Geometry/Topology Qualifying Exam**

## Spring 2009

Solve all **SIX** problems. Partial credit will be given to partial solutions.

1. Let  $S^2 = \{(x_1, x_2, x_3) \mid x_1^2 + x_2^2 + x_3^2 = 1\}$  be the unit sphere in  $\mathbb{R}^3$ . Prove that the map  $f: S^2 \to \mathbb{R}^4, \ f(x_1, x_2, x_3) = (x_1^2 - x_2^2, x_1 x_2, x_1 x_3, x_2 x_3)$ 

is an immersion and that  $f(S^2)$  is diffeomorphic to the projective plane  $\mathbb{RP}^2$ .

- 2. Let  $\omega$  be a closed n-form on  $\mathbb{R}^{n+1} \{0\}$ . Prove that  $\omega$  is exact if and only if  $\int_{S^n} \omega = 0$ , where  $S^n$  is the unit sphere in  $\mathbb{R}^{n+1}$ .
- 3. Find all vector fields Z on  $\mathbb{R}^2$  which satisfy [X,Z]=0 and [Y,Z]=0, where  $X=e^x\frac{\partial}{\partial x}$  and  $Y=\frac{\partial}{\partial y}$  are vector fields defined on all of  $\mathbb{R}^2$ .
- 4. Compute  $\pi_n(T^p)$  for all  $n \geq 1$ , where  $T^p = S^1 \times \cdots \times S^1$  (p times) is the p-dimensional torus.
- 5. Compute  $\pi_1(\mathbb{R}^3 K)$ , where  $K \subset \mathbb{R}^3$  is the union of the vertical axis  $\{x = 0, y = 0\}$  and the unit circle  $\{x^2 + y^2 = 1, z = 0\}$ .
- 6. Let X be a compact, oriented surface of genus 2 (without boundary), and let A be a simple closed curve which separates the surface X into two punctured tori, as given in Figure 1 below. Then compute the relative homology groups  $H_n(X,A)$  for all  $n \ge 0$ .



FIGURE 1