ALGEBRA QUALIFYING EXAM, Spring 2009

Throughout, \mathbb{Z} denotes the integers, \mathbb{Q} the rational numbers, \mathbb{R} the real numbers, and \mathbb{C} the complex numbers.

1. Let G be a finite group. Define the Frattini subgroup of G to be $\Phi(G)$, the intersection of all maximal subgroups of G.
(1) Show that $\Phi(G)$ is characteristic in G (i.e. invariant under any automorphism of G).
(2) Show that if $G=\langle\phi(G), S\rangle$ for some subset S of G, then $G=\langle S\rangle$.
(3) Let P be a Sylow p-subgroup of $\phi(G)$. Show that P is normal in G (hint: first show that $G=\Phi(G) N_{G}(P)$ by using Sylow's theorems and then use (2)).
(4) Show that $\Phi(G)$ is nilpotent.
2. Let G be a finite group acting on the finite set X with $|X|=n>1$, and suppose that G has N orbits on X. If $g \in G$, let $F(g)$ be the number of $x \in X$ fixed by g.
(1) Prove that $\sum_{g \in G} F(g)=|G| N$ (this is known as Burnside's Lemma).
(2) Prove that if G is transitive on X, then $F(g)=0$ for some $g \in G$ (either use (1) or prove directly).
(3) Show that this is not always true if G is not transitive on X.
3. Let $f(x)=x^{4}-x^{3}+x^{2}-x+1 \in \mathbb{Q}[x]$. Find the splitting field (over \mathbb{Q}) of $f(x)$, and compute $\operatorname{Gal}(K / \mathbb{Q})$.
4. Construct an example of each of the following (with reasons):
(1) A field extension $F \subsetneq K$ which is normal but not separable.
(2) A field extension $F \subsetneq K$ which is separable but not normal.
(3) A field extension $F \subsetneq K$ which is neither separable nor normal.
5. Let F be the field of p elements. Let $A \in G:=G L(n, F)$.
(1) Show that A has order a power of p if and only if $(A-I)^{n}=0$.
(2) Show that if this is the case then the order of A is less than $n p$.
(3) Show that any such A is similar to an upper triangular matrix.
6. Let M be a finitely generated abelian group, and N a subgroup. If $M \otimes_{\mathbb{Z}} \mathbb{Q} \cong N \otimes_{\mathbb{Z}} \mathbb{Q}$, show that M / N is torsion.

CONTINUED \rightarrow

7. Consider the polynomial ring $\mathbb{C}[x, y]$ and let I be the ideal $I=\left(x+y-2, x^{2}+y^{2}-10\right)$.
(1) Show that there exists some $m>0$ such that $\left(3 x^{2}+10 x y+3 y^{2}\right)^{m} \in I$.
(2) Show that the two ideals $I_{1}=(x+y-2)$ and $I_{2}=\left(x^{2}+y^{2}-10\right)$ are prime ideals. Are they maximal?
(3) Can I be written as an intersection of maximal ideals? Why or why not?
8. Let A be a finite-dimensional algebra over \mathbb{R}, with center $Z=Z(A)$ and Jacobson radical $J=J(A)$. Assume that for any $a \in A$, there is some $n=n(a) \geq 1$ such that $a^{2^{n}}-a \in Z$.
(1) Show that $J \subseteq Z$.
(2) Show that A / J is commutative.

In fact A itself is commutative, although you do not have to show this.

