Screening Exam in Numerical Analysis - Spring 2009

Name

1. Linear systems

Let $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & 5 & 5 \\ 1 & 5 & 14\end{array}\right)$.
a. Compute LU decomposition of A, i.e. find such L and U that $A=L U$.
b. Show that A is a SPD matrix. Then compute Cholesky decomposition of A, i.e. find such L that $A=L L^{T}$.

2. Least Squares

Consider $A x=b$, where $A \in R^{m \times n}, b \in R^{m}$. A minimum norm solution of the least squares problem is a vector $x \in R^{n}$ with minimum Euclidian norm that minimizes $\|A x-b\|_{2}$.
a. Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\right), \quad b=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$.

Find range and null space of A^{T}, find least squares solution to $A x=b$, and find minimum norm solution: min $\|x\|_{2}$.
b. Show that a vector that minimizes $\|A x-b\|_{2}$ is a minimum norm solution if and only if x is in the range of A^{T}.
3. Eigenvalue problems
a. Describe the $Q R$ iteration algorithm, present steps of efficient implementation, indicate why the method is numerically stable.
b. Verify that the eigenvalues are preserved in each step of shifted $Q R$ iteration algorithm.
c. What choice of the rotation angle θ will make A_{0} tridiagonal?

$$
A_{0}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & -s \\
0 & s & c
\end{array}\right)\left(\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & c & s \\
0 & -s & c
\end{array}\right)=U^{-1} A U
$$

where $s=\sin \theta, c=\cos \theta,|\theta| \leq \pi / 2$.
4. Iterative methods
a. Consider the iterative method $x_{k+1}=-2 x_{k}+b$ to solve the linear system $3 I x=b$, where I is $n \times n$ identity matrix.
For what values of the initial vectors x_{0} the iteration converges? What is the spectral radius of iteration matrix?
b. Let A be a $n \times n$ matrix such that $A=(1+\omega) P-(N+\omega P)$, with $P^{-1} N$ nonsingular and with real eigenvalues $1>\lambda_{1} \geq \ldots \geq \lambda_{n}$.
Find the values $\omega \in \mathbf{R}$ for which the following iterative method

$$
(1+\omega) P x_{k+1}=(N+\omega P) x_{k}+b
$$

with $k \geq 0$, converges to the solution of $A x=b$ for every initial vector x_{0}.
Determine the values of ω for which the convergence rate is maximum.

