Spring 2007 Math 541b Exam

1. Let $\mathbf{p}=\left(p_{1}, \ldots, p_{c}\right)$ be a vector of positive numbers summing to one, and $\mathbf{X} \sim \mathcal{M}(n, \mathbf{p})$, the multinomial distribution given by

$$
P(\mathbf{X}=\mathbf{k})=\binom{n}{\mathbf{k}} \mathbf{p}^{\mathbf{k}}
$$

where $\mathbf{k}=\left(k_{1}, \ldots, k_{c}\right)$ are non-negative integers summing to n,

$$
\binom{n}{\mathbf{k}}=\frac{n!}{\prod_{i=1}^{n} k_{i}!} \quad \text { and } \quad \mathbf{p}^{\mathbf{k}}=\prod_{i=1}^{n} p_{i}^{k_{i}} .
$$

For a given probability vector \mathbf{p}_{0} we test $H_{0}: p=p_{0}$ versus $H_{1}: p \neq p_{0}$ using the chi-squared test statistic

$$
V^{2}=\sum_{i=1}^{c} \frac{\left(X_{i}-n p_{i, 0}\right)^{2}}{n p_{i, 0}}
$$

(a) Calculate the mean vector and the covariance matrix of \mathbf{X}.
(b) Define a matrix \mathbf{P} such that

$$
V^{2}=n^{-1}(\mathbf{X}-n \mathbf{p})^{\prime} \mathbf{P}^{-1}(\mathbf{X}-n \mathbf{p})
$$

(c) Show that

$$
n^{-1 / 2}(\mathbf{X}-n \mathbf{p}) \rightarrow_{p} Y \sim \mathcal{N}_{c}(0, \Sigma)
$$

(d) Find the distribution of $U=P^{-1 / 2} Y$, and show that the covariance matrix of U is a projection. (Recall that Q is a projection matrix if $Q^{\prime}=Q^{2}=Q$.) Hint: show

$$
P^{-1 / 2} \Sigma P^{-1 / 2}=I-P^{-1 / 2} \mathbf{p} \mathbf{p}^{\prime} P^{-1 / 2}
$$

(e) Show that

$$
V^{2} \rightarrow_{d} \chi_{c-1}^{2}
$$

that is, that V^{2} converges in distribution to a chi squared distribution with $c-1$ degrees of freedom.
2. Suppose X_{1}, \cdots, X_{n} are independently and identically distributed with variance σ^{2}.
(a) Show that the estimate of variance $\hat{\theta}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n$ has bias equal to $-\sigma^{2} / n$ as an estimator of σ^{2}.
(b) Show that the bias of the jackknife estimate is $-s^{2} / n$, where $s^{2}=$ $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n$.

