Spring 2007 Math 541a Exam

1. Let $\mathcal{P} = \{y_1, y_2, \dots, y_N\}$, where $y_i \in R$ are N distinct real numbers. The size N of \mathcal{P} may be very large and it is impractical to sample all the values of \mathcal{P} . Suppose that we are interested in the population average

$$\mu = \frac{1}{N} \sum_{i=1}^{N} y_i.$$

In a survey, a subset $\mathbf{S} \subset \mathcal{P}$ of *n* elements, 0 < n < N, are selected from \mathcal{P} without replacement and the values are recorded as X_1, X_2, \dots, X_n .

- (a) Describe the probability space and the resulting joint distribution of (X_1, X_2) .
- (b) Calculate the mean EX_1 and the covariance $Cov(X_1, X_2)$.
- (c) Suppose that we use the sampling average

$$\hat{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

to estimate the population mean μ . Show that \hat{X} is an unbiased estimator of μ .

(d) Show that

$$\operatorname{Var}(\hat{X}) = \frac{N-n}{n(N-1)}V_y,$$

where

$$V_y = \frac{1}{N} \sum_{j=1}^{N} (y_j - Y)^2.$$

2. Suppose that $X = (X_1, X_2, \dots, X_n)$ follows a first order autoregressive model

$$X_t - \mu = \rho(X_{t-1} - \mu) + \epsilon_t, \quad t = 1, 2, 3, \cdot, n,$$

where $\mu \in R$ and $\rho \in (-1, 1)$ and unknown and ϵ_t 's are iid from N(0, 1). Let $\theta = (\mu, \rho)$. Suppose $X_0 = 0$.

(a) What is the joint density function for (X_1, X_2, \dots, X_n) .

- (b) Find the maximum likelihood estimator for (μ, ρ) .
- (c) Calculate Fisher's information matrix and a lower bound for the variance of an unbiased estimator of μ^2 .