ALGEBRA PH.D QUALIFYING EXAM SPRING 2007

- 1. For *G* a finite group with |G| > 1 and *p* a prime dividing the order of *G*, let $O_p(G) = \bigcap \{P \in Syl_p(G)\}$.
 - a) Show that $O_p(G)$ is a normal subgroup of G.
 - b) Show that if N is a normal subgroup of G with $|N| = p^k$, then $N \subseteq O_p(G)$.
 - c) Prove that if *G* is solvable then for some p, $|O_p(G)| \neq 1$.
- 2. Let $F = GF(p^n)$ be a field of (exactly) p^n elements. Suppose that k is a positive integer dividing n, and set $B = \{a^{p^k} + a^{p^{2^k}} + \dots + a^{p^n} \mid a \in F\}.$
 - i) Show that $B \subseteq E$, a subfield of *F* with p^k elements.
 - ii) Show that B = E.
- 3. Let $A \in M_n(\mathbf{Q})$ with $A^k = I_n$. If *j* is a positive integer with (j, k) = 1, show that $tr(A) = tr(A^j)$. (Hint: Consider $A \in M_n(\mathbf{Q}(\varepsilon))$ for $\varepsilon = e^{2\pi i/k}$, where $i^2 = -1$.)
- 4. Let *R* be a commutative ring with 1 and let *M* be a Noetherian *R*-module. If $f \in \text{Hom}_R(M_R, M_R)$ is surjective, show that *f* is an automorphism of M_R .
- 5. Let $f, g \in C[x, y]$ so that $(0, 0) \in C^2$ is the only common zero of f and g. Prove that there is a positive integer m so that whenever $h \in C[x, y]$ has no monomial of degree less than m, then $h \in f \cdot C[x, y] + g \cdot C[x, y]$.
- 6. For a fixed positive integer n > 1, describe all finite rings R so that $x^n = x$ for all $x \in R$.