Screening Exam in Numerical Analysis, Spring 2007

There are questions on 4 chapters covered in M502a.

I. Linear systems

1. Give a definition of a Symmetric Positive Definite (SPD) matrix $A \in R^{n \times n}$.
2. Show that no pivoting is necessary during Gaussian Elimination of a SPD matrix.
3. Show that matrix $A=\left[\begin{array}{rrrr}1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$ is SPD .
II. Iterative solutions.

Consider solving a system $A x=b$, where $x, b \in R^{n}, A \in R^{n \times n}$ using semidirect iterations, i.e. splitting the system into $M x=(M-A) x+b$ and iterating as $M x_{k+1}=(M-A) x_{k}+b$, or $x_{k+1}=Q x_{k}+c$, where the iteration matrix $Q=I-M^{-1} A$.

1. Define M for the Jacobi, Gauss-Seidel and SOR iterations.
2. Let $A=\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]$.
a. Find Q for the Jacobi, Gauss-Seidel and SOR iterations.
b. Find the optimal overrelaxation parameter ω for this $Q_{S O R}$.
c. Compute spectral radius of all three Q matrices and compare their rate of convergence.

III. Eigenvalue problems

1. Prove the Gerschgorin's theorem: All the eigenvalues of the matrix $A \in$ $C^{n \times n}$ lie in the union of the Gerschgorin disks in the complex plane

$$
\mathcal{D}_{i}=\left\{z:\left|z-a_{i i}\right| \leq r_{i}\right\}, \quad r_{i}=\sum_{j \neq i, j=1}^{n}\left|a_{i j}\right|, i=1,2, \ldots, n
$$

Moreover, if the union \mathcal{M} of k Gershgorin disks \mathcal{D}_{i} is disjoint from the remaining disks, then \mathcal{M} contains precisely k eigenvalues of A.
2. Consider the matrix

$$
B=\left(\begin{array}{cccc}
-5 & 1 & 0 & 0 \\
a & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

with $1 \leq a \leq 3$. Show that the dominant eigenvalue of B is real.
IV. Least squares

1. Given the matrix $A \in \mathbb{R}^{m \times n}$ with rank n. Show that $A^{T} A$ is symmetric positive definite.
2. Suppose $b \in \mathbb{R}^{m}$. Show that $x=\left(A^{T} A\right)^{-1} A^{T} b$ minimizes $\|b-A x\|_{2}$.
3. If the matrix is given by

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
1 & 0
\end{array}\right)
$$

Find pseudoinverse A^{\dagger}.

