Screening Exam on Numerical Analysis - Spring 2008

Name \qquad

1. Linear Equations

a. Let $A \in \mathbb{R}^{n \times n}$. Show that the sum of eigenvalues of A is equal to the sum of the diagonal elements of A.

Hint: compare $\operatorname{det}(A-\lambda I)$ and $p(\lambda)=\left(\lambda_{1}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)$.
b. Consider solving $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is non-singular. Derive the estimate for the relative error in the solution x if the right hand side b is perturbed by δ.
c. Let $A=\left(\begin{array}{cc}1 & 1 \\ 1 & 1+\epsilon\end{array}\right), \epsilon>0$.

How small ϵ should be for you to call the matrix ill-conditioned?

2. Least Squares

a. Prove the following Theorem:

If $A=Q R$ with $Q^{T} Q=I$, then the least squares solution to $A x=b$ is $x=R^{-1} Q^{T} b$,
where A is a $n \times m$ matrix.
b. Compute $Q R$ factorization of $A=\left(\begin{array}{ccc}0 & 0 & 5 \\ 0 & 4 & 1 \\ 1 & 1 & 1\end{array}\right)$.

3. Eigenvalue Problems

a. Let $B \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{n \times m}$ be two given matrices. Prove that the nonzero eigenvalues of $B C$ and $C B$ are the same.
b. Suppose $n \geq 1$ and $T \in \mathbb{R}^{(2 n+1) \times(2 n+1)}$ is a tridiagonal matrix of the form

$$
T=\left[\begin{array}{ccccc}
a_{1} & b_{2} & & & \\
b_{2} & a_{2} & b_{3} & & \\
& b_{3} & \ddots & \ddots & \\
& & \ddots & a_{2 n} & b_{2 n+1} \\
& & & b_{2 n+1} & a_{2 n+1}
\end{array}\right]
$$

$b_{i} \neq 0$ for all i but $b_{n+1}=0$. Show that there exists at least one eigenvalue with multiplicity one. (Hint: Study the multiplicity of eigenvalues of $T_{1} \in \mathbb{R}^{n \times n}$ and $T_{2} \in \mathbb{R}^{(n+1) \times(n+1)}$, where $T=\left[\begin{array}{cc}T_{1} & 0 \\ 0 & T_{2}\end{array}\right]$.)
c. Perform one step of a QR algorithm without shift on $A=\left[\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & 0\end{array}\right]$

4. Iterative Methods

Consider $A \in \mathbb{R}^{n \times n}$ to be strictly positive definite, that is, $\xi^{T} A \xi>0$ for all nonzero $\xi \in \mathbb{R}^{n}$. Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ are eigenvalues and spectral radius is $\rho=\max _{i}\left|\lambda_{i}(A)\right|$.
a. Show that $\rho \leq\|A\|$ for any consistent matrix norm $\|\cdot\|$.
b. We use the Richardson iteration formula to solve $A x=b$:

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}+\omega\left(b-A x^{(k)}\right), \quad k=0,1,2, \ldots \tag{1}
\end{equation*}
$$

Show that (1) is convergent for any $0<\omega<2 / \rho$.
c. Compare two iterations of (1), by taking $\omega_{1}=1 / \rho$ and $\omega_{2}=1 /\left(\lambda_{1}+\lambda_{n}\right)$. Which one has faster convergence rate? (Hint: compare spectral of the iteration matrix for these two cases).

