Name

Solve any three out of the following four problems (do not attempt more than three).

1. linear equations

a) Define the condition number of a matrix A and explain briefly how it is related to the numerical solving of the system Ax = b. Prove that $||A|| \cdot ||A^{-1}|| \ge 1$ for any operator norm $||\cdot||$, provided that A^{-1} exists.

b) Let $A \in \mathbb{R}^{n \times n}$ be a nonsingular matrix. Show that the condition number $\kappa(A)$ satisfies

$$\kappa(A) \ge \frac{\|A\|}{\|B - A\|}$$

for any singular matrix $B \in \mathbb{R}^{n \times n}$.

c) Suppose $0 < |\varepsilon| < 1$. Given matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & \varepsilon & \varepsilon \\ 1 & \varepsilon & \varepsilon \end{bmatrix}.$$

Show that

$$\kappa_{\infty}(A) \ge \frac{3}{2\varepsilon}$$

where κ_{∞} is the condition number with respect to infinity norm.

2. iterative methods

a) Let $B \in \mathbb{R}^{n \times n}$ and $c \in \mathbb{R}^n$. Denote the spectral radius by $\rho(B)$. Suppose $\rho(B) < 1$, then show that

$$\lim_{n \to \infty} B^n = 0$$

b) Prove that A stationary iterative method

$$x^{(n+1)} = Bx^{(n)} + c$$

is convergent to the unique solution of (I - B)x = c for all initial vector $x^{(0)}$ provided that $\rho(B) < 1$.

c) Consider the iteration of (b). Let $||B|| \leq \beta < 1$, and $||x^{(k)} - x^{(k-1)}|| \leq \varepsilon$ for some k. Prove that

$$\|x - x^{(k)}\| \le \frac{\beta\varepsilon}{1 - \beta}$$

3. eigenproblems

a. Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 10 & 0 \\ 1 & 1 & 9.8 \end{pmatrix}$$
.

i. Explain the slow rate of convergence of the power method with A.

ii. Choose a suitable shift σ so that power method converges to the largest eigenvalue of A. Explain the improvement of the rate of convergence with $A - \sigma I$.

b. Show that a product (both HR and RH) of a nonsingular right triangular matrix (R) with a Hessenberg matrix (H) is a Hessenberg matrix.

4. least squares

Consider the following least squares minimization problem: find a minimum norm solution of the functional

$$J(x) = \|Bx - c\|^2,$$

where B is a $n \times m$ real matrix and $c \in \mathbb{R}^m$ is given.

- (a) Write down the minimum norm solution of the least square minimization problem as a solution of system of linear equation of the form Ax = y and determine whether or not a unique solution of Ax = y exists.
- (b) Express the minimum norm solution of the least square minimization problem as a function of the eigenvectors of the matrix A. Justify your answer.

A penalty method approach for solving this problem is to consider an alternative minimization problem of finding x_{λ} that minimizes

$$J_{\lambda}(x) = \|Bx - c\|^2 + \lambda \|x\|^2,$$

for $\lambda > 0$.

- (c) Write down the solution of penalty method as a function of the eigenvectors of the matrix A.
- (d) Show that x_{λ} tends toward the solution x of the original least square minimization problem as λ tends toward infinity.