Name \qquad
Solve any three out of the following four problems (do not attempt more than three).

1. linear equations

a) Define the condition number of a matrix A and explain briefly how it is related to the numerical solving of the system $A x=b$. Prove that $\|A\| \cdot\left\|A^{-1}\right\| \geq 1$ for any operator norm $\|\cdot\|$, provided that A^{-1} exists.
b) Let $A \in R^{n \times n}$ be a nonsingular matrix. Show that the condition number $\kappa(A)$ satisfies

$$
\kappa(A) \geq \frac{\|A\|}{\|B-A\|}
$$

for any singular matrix $B \in R^{n \times n}$.
c) Suppose $0<|\varepsilon|<1$. Given matrix

$$
A=\left[\begin{array}{lll}
1 & -1 & 1 \\
-1 & \varepsilon & \varepsilon \\
1 & \varepsilon & \varepsilon
\end{array}\right]
$$

Show that

$$
\kappa_{\infty}(A) \geq \frac{3}{2 \varepsilon},
$$

where κ_{∞} is the condition number with respect to infinity norm.

2. iterative methods

a) Let $B \in R^{n \times n}$ and $c \in R^{n}$. Denote the spectral radius by $\rho(B)$.

Suppose $\rho(B)<1$, then show that

$$
\lim _{n \rightarrow \infty} B^{n}=0 .
$$

b) Prove that A stationary iterative method

$$
x^{(n+1)}=B x^{(n)}+c
$$

is convergent to the unique solution of $(I-B) x=c$ for all initial vector $x^{(0)}$ provided that $\rho(B)<1$.
c) Consider the iteration of (b). Let $\|B\| \leq \beta<1$, and $\left\|x^{(k)}-x^{(k-1)}\right\| \leq \varepsilon$ for some k. Prove that

$$
\left\|x-x^{(k)}\right\| \leq \frac{\beta \varepsilon}{1-\beta}
$$

3. eigenproblems

a. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 10 & 0 \\ 1 & 1 & 9.8\end{array}\right)$.
i. Explain the slow rate of convergence of the power method with A.
ii. Choose a suitable shift σ so that power method converges to the largest eigenvalue of A. Explain the improvement of the rate of convergence with $A-\sigma I$.
b. Show that a product (both HR and RH) of a nonsingular right triangular matrix (R) with a Hessenberg matrix (H) is a Hessenberg matrix.

4. least squares

Consider the following least squares minimization problem: find a minimum norm solution of the functional

$$
J(x)=\|B x-c\|^{2},
$$

where B is a $n \times m$ real matrix and $c \in \mathbb{R}^{m}$ is given.
(a) Write down the minimum norm solution of the least square minimization problem as a solution of system of linear equation of the form $A x=y$ and determine whether or not a unique solution of $A x=y$ exists.
(b) Express the minimum norm solution of the least square minimization problem as a function of the eigenvectors of the matrix A. Justify your answer.

A penalty method approach for solving this problem is to consider an alternative minimization problem of finding x_{λ} that minimizes

$$
J_{\lambda}(x)=\|B x-c\|^{2}+\lambda\|x\|^{2},
$$

for $\lambda>0$.
(c) Write down the solution of penalty method as a function of the eigenvectors of the matrix A.
(d) Show that x_{λ} tends toward the solution x of the original least square minimization problem as λ tends toward infinity.

