Screening Exam in Numerical Analysis - Fall 2008

Linear Algebra

1. Perform LU factorization on Hilbert matrix $H_{3}=\left[h_{i j}\right]_{1 \leq i, j \leq 3}$, with elements

$$
h_{i j}=\frac{1}{i+j-1} .
$$

2. Let $A \in \mathbb{R}^{n \times n}$ have LU factorization, and $P \in \mathbb{R}^{n \times n}$ be given by $P=\left(e_{n}, e_{n-1}, \ldots, e_{1}\right)$, where e_{i} is unit vector. Prove that PAP has UL factorization, that is, there exists upper triangular U and lower triangular L satisfying $P A P=U L$.
3. Let $B=\left[b_{i j}\right]_{1 \leq i, j \leq n} \in \mathbb{R}^{n \times n}$ be symmetric positive definite. Show that for any $1 \leq i, j, k \leq n$

$$
b_{i j}+b_{j k}+b_{k i} \leq b_{i i}+b_{j j}+b_{k k} .
$$

Least squares

1. Let $A=\left[\begin{array}{cc}\sqrt{2} & 0 \\ 1 & -1 \\ 1 & 1\end{array}\right]$. Find orthonormal matrix $Q \in \mathbb{R}^{3 \times 2}$ and uppertriangle matrix $R \in \mathbb{R}^{2 \times 2}$, such that $A=Q R$.
2. Let $b=(2,-1,1)^{T}$. Find $x \in \mathbb{R}^{2 \times 1}$, which minimizes $\|A x-b\|_{2}$.
3. Prove Hadamard's determinant inequality:

If $A=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{R}^{n \times n}$, then

$$
|\operatorname{det}(A)| \leq \Pi_{j=1}^{n}\left\|a_{j}\right\|_{2},
$$

with equality only if $A^{T} A$ is diagonal matrix or A has a zero column. (Hint: Consider QR factorization $A=Q R$.)

Iterative Methods

1. Consider solving $A u=f$, where $A \in R^{n \times n}$ is consistently ordered.
a. Give the matrix form of Jacobi, Gauss-Seidel and SOR iterations.
b. If the eigenvalues of the Jacobi iteration matrix, Q_{J} are $\lambda_{i}\left(Q_{J}\right)=$ $\cos \left(\frac{\pi i}{n+1}\right), \mathrm{i}=1, \ldots, \mathrm{n}$, what is the optimal over-relaxation parameter $\omega_{o p t}$?
2. Consider solving $A u=f$, where $A \in R^{n \times n}$ and $A=A^{T}$.
a. Define the conjugate gradient method.
b. Give the estimate of its rate of convergence.
c. Compute estimate of the rate of convergence if the eigenvalues of A are $\lambda_{i}(A)=2+2 \cos \left(\frac{\pi i}{n+1}\right), \mathrm{i}=1, \ldots, \mathrm{n}$.

Eigenvalue Problems.

1. Show that if X is a unitary matrix, and the first column of X is an eigenvector of A associated with eigenvalue λ, then

$$
X^{*} A X=\left[\begin{array}{lll}
\lambda & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right]
$$

2. Consider the matrix

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
-2 & 2 & 1 \\
2 & -2 & 3
\end{array}\right]
$$

with an eigenvalue $\lambda=2$ and corresponding eigenvector $x=[1,2,2]^{T}$. Construct a Householder matrix H such that

$$
H A H^{*}=\left[\begin{array}{lll}
2 & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right] .
$$

