Geometry/Topology Qualifying Exam

Fall 2008

Solve all SIX problems. Partial credit will be given to partial solutions.

- 1. Consider the map $d_f : \Omega^i(M) \to \Omega^{i+1}(M)$ given by $\omega \mapsto d\omega + df \wedge \omega$, where M is a smooth manifold, $\Omega^i(M)$ is the set of smooth *i*-forms on M, and f is a smooth function on M.
 - (a) Show that d_f is a cochain map, i.e., $d_f \circ d_f = 0$.
 - (b) Let $H^i_f(M)$ be the *i*th cohomology group of the cochain complex $(\Omega^i(M), d_f)$. Show that $H^0_f(M) \cong \mathbb{R}$ when M is the real line \mathbb{R} .
- 2. Show that, when m, n > 0, the homomorphism $f^* : H^k_{dR}(S^m \times S^n) \to H^k_{dR}(S^{m+n})$ induced in de Rham cohomology by $f : S^{m+n} \to S^m \times S^n$ is trivial for all k > 0. Here S^n is the *n*-dimensional sphere. [Possible hint: Construct a volume form for $S^m \times S^n$ from a volume form on S^m and a volume form on S^n .]
- 3. Prove that the set $C = \{(x, y) | y^2 x^3 = 0\}$ is not a smooth submanifold of the plane. [Hint: What is the space of tangent vectors in $T_{(0,0)}\mathbb{R}^2$ which are tangent to C?]
- 4. Let T be the surface obtained by revolving the circle $\{(x, y, z) \mid z = 0, (x R)^2 + y^2 = r^2\}$ around the y-axis, where R > r. Compute the integral

$$\int_T x dy \wedge dz - y dx \wedge dz + z dx \wedge dy.$$

- 5. Let B^3 be the (closed) 3-dimensional ball, and let K be a closed, connected 1-dimensional submanifold of B^3 with $\partial K = K \cap \partial B^3 = 2$ points. Compute the homology of the complement $B^3 K$ (= an apple minus a wormhole).
- 6. Recall that two covering spaces p : X̃ → X and p' : X̃' → X are *isomorphic* if there exists a homeomorphism φ̃ : X̃ → X̃' such that p' ∘ φ̃ = p. Consider the covering spaces p : X̃ → X of the torus X = S¹ × S¹ whose fiber p⁻¹(x₀) at any point x₀ ∈ X consists of 3 points. How many distinct isomorphism classes of such coverings are there?