Geometry and Topology Graduate Exam February 2008

1. Let $p: \widetilde{X} \to X$ be a covering with path connected base X, and let G be its automorphism group, consisting of those homeomorphisms $\varphi: \widetilde{X} \to \widetilde{X}$ such that $p \circ \varphi = \varphi$. Pick base points $x_0 \in X$ and $\widetilde{x}_0 \in \widetilde{X}$ with $p(\widetilde{x}_0) = x_0$. Suppose that, for any two $\widetilde{x}'_0, \widetilde{x}''_0 \in p^{-1}(x_0)$, there exists $\varphi \in G$ such that $\varphi(\widetilde{x}''_0) = \widetilde{x}'_0$. Show that there is an exact sequence

$$1 \longrightarrow \pi_1(\widetilde{X}; \widetilde{x}_0) \xrightarrow{p_*} \pi_1(X; x_0) \longrightarrow G \longrightarrow 1.$$

2. Consider on \mathbb{R}^n the standard inner product $(\vec{a}, \vec{b}) = \sum_{i=1}^n a_i b_i$, when $\vec{a} = (a_1, a_2, \ldots a_n)$ and $\vec{b} = (b_1, b_2, \ldots, b_n)$. Let V be a vector subspace of \mathbb{R}^n , and let $\pi : \mathbb{R}^n \to V$ be the orthogonal projection with respect to the above inner product. If M is a submanifold of \mathbb{R}^n , show that the restriction $\pi_{|M} : M \to V$ is an immersion if and only if $T_x M \cap V^{\perp} = \{0\}$ for every $x \in M$.

3. Let $f : X \to X$ be a map homotopic to a constant map, and let $M_f = X \times [0,1]/\sim$ where the equivalence relation \sim identifies (x,0) to (f(x),1). Compute the homology groups of M_f .

4. Consider a differentiable map $f: S^{2n-1} \to S^n$, with $n \ge 2$. If $\alpha \in \Omega^n(S^n)$ is a differential form of degree n on S^n such that $\int_{S^n} \alpha = 1$, let $f^*(\alpha) \in \Omega^n(S^{2n-1})$ be its pull-back under the map f.

a) Show that there exists $\beta \in \Omega^{n-1}(S^{2n-1})$ such that $f^*(\alpha) = d\beta$.

b) Show that the integral $I(f) = \int_{S^{2n-1}} \beta \wedge d\beta$ is independent of the choice of β and α . It may be useful to remember that the map $H^n(S^n) \to \mathbb{R}$ defined by $\gamma \mapsto \int_{S^n} \gamma$ is an isomorphism.

5. Let $\omega \in \Omega^2(S^2)$ be the restriction of the 2-form

 $x \, dy \wedge dz + z \, dx \wedge dy + y \, dz \wedge dx$

to the sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3; x^2 + y^2 + z^2 = 1\}$. Compute the integral $\int_{S^2} \omega$.

6. Recall that the 1-dimensional projective space \mathbb{RP}^1 consists of all lines in \mathbb{R}^2 passing through the origin. Let $f : \mathbb{R} \to \mathbb{RP}^1$ associate to $x \in \mathbb{R}$ the line passing through (x, 1) and the origin. Finally, let P(x) be a polynomial function of the variable x.

a) Show that there is no differential form ω on \mathbb{RP}^1 such that $f^*(\omega) = P(x) dx$.

b) Show that there exists a vector field V on \mathbb{RP}^1 such that $f^*(V) = P(x)\frac{\partial}{\partial x}$ if and only if the degree of P(x) is ≤ 2 .

7. Let M be a compact differentiable manifold, and let $C^{\infty}(M)$ be the algebra of all differentiable functions $M \to \mathbb{R}$. Let \mathcal{I} be a maximal ideal of $C^{\infty}(M)$. Show that there is a point $x_0 \in M$ such that $\mathcal{I} = \{f \in C^{\infty}(M); f(x_0) = 0\}$. (Possible hint: Suppose that the property is not true and show that, for every $x \in M$, there exists a non-negative function $f \in \mathcal{I}$ such that f(x) > 0.)