Graduate Exam
 Geometry and Topology

Fall 2007

Problem 1. Let X be a path connected space such that $H_{p}(X, \mathbb{Z})=0$ for every p with $0<p \leq n$. If $X \times S^{n}$ denotes the product of X with the n-dimensional sphere S^{n}, compute the homology groups $H_{p}\left(X \times S^{n} ; \mathbb{Z}\right)$ for every p with $0<p \leq n$.

Problem 2. Let C_{1} and C_{2} be two disjoint circles in \mathbb{R}^{3}, and let $A=S^{1} \times$ $[0,1]$ denote the cylinder. Let X be the space obtained from the disjoint union $X \sqcup A$ by gluing the boundary component $S^{1} \times\{0\}$ of A to the circle C_{1} by a homeomorphism, and by gluing the other boundary component $S^{1} \times\{1\}$ to C_{2} by another homeomorphism. Compute the fundamental group of the space X so obtained.

Problem 3. Let $M_{n}(\mathbb{R})$ be the vector space of $n \times n$ matrices with coefficients in \mathbb{R}, and consider the determinant function det : $M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$, which to a matrix A associates its determinant $\operatorname{det}(A)$. Compute the differential map (also called tangent map) of the function det at the identity matrix $I_{n} \in M_{n}(\mathbb{R})$.

Problem 4. Let M be a compact orientable n-dimensional manifold whose boundary ∂M is homeomorphism to the sphere $S^{n-1} \subset \mathbb{R}^{n}$ by a homeomorphism f : $\partial M \rightarrow S^{n-1}$. Let F be a continuous map $F: M \rightarrow \mathbb{R}^{n}$ whose restriction to the boundary ∂M coincides with f. Show that the image $F(M)$ necessarily contains the center O of the sphere S^{n-1}.

Problem 5. Let Ω be the open shell in \mathbb{R}^{2} consisting of those $(x, y) \in \mathbb{R}^{2}$ such that $1<x^{2}+y^{2}<10$, and consider the 1 -form

$$
\omega=\frac{x d y-y d x}{4 x^{2}+y^{2}}
$$

a) Show that ω is closed in Ω.
b) Show that ω is not closed in Ω. (Possible hint: consider an ellipse of equation $4 x^{2}+y^{2}=$ constant $)$.

Problem 6. Let $\mathbb{R}^{2} \mathbb{P}^{2}$ denote the real projective plane of dimension 2. Consider the map $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R} \mathbb{P}^{2}$ which to $(x, y) \in \mathbb{R}^{2}$ associates the element of $\mathbb{R} \mathbb{P}^{2}$ represented by the line passing through the point $(x, y, 1)$. (Recall that $\mathbb{R P}^{2}$ is the space of lines passing through the origin in \mathbb{R}^{3}.) If $C=\left\{(x, y) \in \mathbb{R}^{2} ; y^{2}=x^{3}-x\right\}$, show that the closure $\overline{\varphi(C)}$ of $\varphi(C)$ in $\mathbb{R P}^{2}$ is a differentiable submanifold of $\mathbb{R P}^{2}$.

Problem 7. Let M and N be two compact connected manifolds of the same dimension n, and let $f: M \rightarrow N$ be a continuous map. Suppose that the homomorphism $H_{n}(f): H_{n}(M ; \mathbb{Z}) \rightarrow H_{n}(\mathbb{Z})$ induced by f is not 0 . If $f_{*}: \pi_{1}\left(M, x_{0}\right) \rightarrow \pi_{1}\left(N, f\left(x_{0}\right)\right)$ is the homomorphism induced by f between the fundamental groups, show that its image $f_{*}\left(\pi\left(M ; x_{0}\right)\right)$ has finite index in $\pi\left(N ; f\left(x_{0}\right)\right)$. (Possible hint: Consider a suitable covering of N.)

