- 1. Let $\{P_{\theta}, \theta \in \Theta\}$ be a family of probability distributions. A statistic V is called *ancillary* for θ if its distribution does not depend on θ .
 - (a) Let X_1, \ldots, X_n have normal distribution $N(\mu, 1)$. Show that $V = X_1 \overline{X}$ is an ancillary statistic for μ .
 - (b) Prove that if T is a complete sufficient statistic for the family {P_θ, θ ∈ Θ}, then any ancillary statistic V is independent of T. (This is a theorem due to Basu). (*Hint: show that for any (measurable) set A*,

$$P_{\theta}(V \in A | T = t) = P(V \in A | T = t) = P(V \in A),$$

and derive the conclusion).

2. With $\theta > 0$ unknown, let a sample consist of X_1, \ldots, X_n , independent observations with distribution

$$F(y; \theta) = 1 - \sqrt{1 - \frac{y}{\theta}}, \quad 0 < y < \theta.$$

(a) Prove that the maximum likelihood estimate of θ based on the sample is the maximum order statistic

$$X_{(n)} = \max_{1 \le i \le n} X_i.$$

(b) Determine a sequence of positive numbers a_n and a non-trivial distribution for a random variable X such that

$$a_n(\theta - X_{(n)}) \to_d X.$$

(c) Compare the rate a_n in part b) to the rate of a parametric estimation problem whose regularity would allow the application of the Cramer Rao bound. Comment.