Algebra Qualifying Exam - Fall 2016

1. If $R:=\mathbb{C}[x, y] /\left(y^{2}-x^{3}-1\right)$, then describe all the maximal ideals in R.
2. Suppose F is a field, and $\mathfrak{b}_{n}(F)$ is the F-algebra of upper-triangular matrices, i.e., the subalgebra of $M_{n}(F)$ consisting of matrices X such that $X_{i j}=0$ when $i>j$. Describe the Jacobson radical of $\mathfrak{b}_{n}(F)$, the simple modules, and the maximal semi-simple quotient.
3. Let \mathbb{F}_{5} be the finite field with 5 elements, and consider the group $G=P G L_{2}\left(\mathbb{F}_{5}\right)$ (i.e., the quotient of the group of invertible 2×2-matrices over \mathbb{F}_{5} by the subgroup of scalar multiples of the identity).
(a) What is the order of G ?
(b) Describe $N_{G}(P)$ where P is a Sylow-5 subgroup of G.
(c) If $H \subset G$ is a subgroup, can H have order 15,20 or 30 ?
4. Let A be an $n \times n$ matrix over \mathbb{Z}. Let V be the \mathbb{Z}-module of column vectors of size n over \mathbb{Z}.
(a) Prove that the size of $V / A V$ is equal to the absolute value of $\operatorname{det}(A)$ if $\operatorname{det}(A) \neq 0$.
(b) Prove that $V / A V$ is infinite if $\operatorname{det}(A)=0$.
(hint: use the theory of finitely generated modules \mathbb{Z}-modules)
5. Let V be a finite dimensional right module over a division ring D. Let W be a D-submodule of V.
(a) Let $I(W)=\left\{f \in \operatorname{End}_{D}(V) \mid f(W)=0\right\}$. Prove that $I(W)$ is a left ideal of $\operatorname{End}(V)$.
(b) Prove that any left ideal of $\operatorname{End}_{D}(V)$ is $I(W)$ for some submodule W.
6. Let p and q be distinct primes. Let F be the subfield of \mathbb{C} generated by the $p q$ roots of unity. Let a, b be squarefree integers all greater than 1 . Let $c, d \in \mathbb{C}$ with $c^{p}=a$ and $d^{q}=b$. Let $K=F(c, d)$.
(a) Show that K / \mathbb{Q} is a Galois extension.
(b) Describe the Galois group of K / F.
(c) Show that any intermediate field $F \subset L \subset K$ satisfies $L=F(S)$ where S is some subset of $\{c, d\}$.
