Algebra Qualifying Exam - Fall 2016

- 1. If $R := \mathbb{C}[x, y]/(y^2 x^3 1)$, then describe all the maximal ideals in R.
- 2. Suppose F is a field, and $\mathfrak{b}_n(F)$ is the F-algebra of upper-triangular matrices, i.e., the subalgebra of $M_n(F)$ consisting of matrices X such that $X_{ij} = 0$ when i > j. Describe the Jacobson radical of $\mathfrak{b}_n(F)$, the simple modules, and the maximal semi-simple quotient.
- Let F₅ be the finite field with 5 elements, and consider the group G = PGL₂(F₅) (i.e., the quotient of the group of invertible 2 × 2-matrices over F₅ by the subgroup of scalar multiples of the identity).
 - (a) What is the order of G?
 - (b) Describe $N_G(P)$ where P is a Sylow-5 subgroup of G.
 - (c) If $H \subset G$ is a subgroup, can H have order 15, 20 or 30?
- Let A be an n × n matrix over Z. Let V be the Z-module of column vectors of size n over Z.
 - (a) Prove that the size of V/AV is equal to the absolute value of det(A) if det(A) ≠ 0.
 - (b) Prove that V/AV is infinite if det(A) = 0.

(hint: use the theory of finitely generated modules \mathbb{Z} -modules)

- 5. Let V be a finite dimensional right module over a division ring D. Let W be a D-submodule of V.
 - (a) Let $I(W) = \{f \in \operatorname{End}_D(V) | f(W) = 0\}$. Prove that I(W) is a left ideal of $\operatorname{End}(V)$.
 - (b) Prove that any left ideal of $\operatorname{End}_D(V)$ is I(W) for some submodule W.
- 6. Let p and q be distinct primes. Let F be the subfield of \mathbb{C} generated by the pq-roots of unity. Let a, b be squarefree integers all greater than 1. Let $c, d \in \mathbb{C}$ with $c^p = a$ and $d^q = b$. Let K = F(c, d).
 - (a) Show that K/\mathbb{Q} is a Galois extension.
 - (b) Describe the Galois group of K/F.
 - (c) Show that any intermediate field F ⊂ L ⊂ K satisfies L = F(S) where S is some subset of {c, d}.