## DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Fall 2008

1. Consider the linear $p$-periodic system in $\mathbb{R}^{n}$ with $A$ continuous,

$$
x^{\prime}(t)=A(t) x(t), \quad A(t+p)=A(t) .
$$

(a) State Floquet's Theorem,
(b) Assume each eigenvalue, $\lambda(t)$ of $A(t)$ satisfies

$$
\mathcal{R} e \lambda(t) \leq-1
$$

What can be concluded about the asymptotic stability of the stationary solution, $x(t) \equiv 0$ ?
(c) Describe with a sketch the skew-product dynamical system defined by the above system.
2. Show that if real valued continuos functions $f(x), g(x)$, and $h(x)$ satisfy the inequalities

$$
\begin{equation*}
f(x) \geq 0, \quad g(x) \leq h(x)+\int_{0}^{x} f(\xi) g(\xi) d \xi \tag{1}
\end{equation*}
$$

on an interval $0 \leq x \leq x_{0}$, then

$$
g(x) \leq h(x)+\int_{0}^{x}\left\{f(\zeta) h(\xi) \exp \left[\int_{\xi}^{x} f(\eta) d \eta\right]\right\} d \xi
$$

on $0 \leq x \leq x_{0}$.
Hint: If we put

$$
y(x)=\int_{0}^{x} f(\xi) g(\xi) d \xi
$$

then $\frac{d y}{d x} \leq f(x) h(x)+f(x) y$ and $y(0)=0$.
3. Let $\alpha \in[-1,1], \beta>0$ and $z=x+i y$ a complex variable. Consider the system in $\mathbb{R}^{2}$,

$$
z^{\prime}=(\alpha+i \beta) z-|z|^{4} z .
$$

Describe in detail the change that takes place in the phase portrait as $\alpha$ varies from -1 to 1 . Prove your statements.
4. Let $u(x, t)$ be a bounded solution to the Cauchy Problem for the Heat equation

$$
\begin{aligned}
& u_{t}=a^{2} u_{x x}, \quad t>0, \quad x \in \mathbb{R}, \quad a>0 \\
& u(x, 0)=\varphi(x) .
\end{aligned}
$$

Here $\varphi(x) \in C(\mathbb{R})$ satisfies

$$
\lim _{x \rightarrow \infty} \varphi(x)=b, \quad \lim _{x \rightarrow-\infty} \varphi(x)=c
$$

Compute the limit of $u(x, t)$ as $t$ goes to infinity. Justify your argument carefully.
Hint: Use the explicit form of the solution, a change of variables $z=(y-x) / \sqrt{4 a^{2} t}$ and a splitting of the integral into three parts.
5. Let $\varphi(x)$ be a function in $C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, and consider the following damped wave equation

$$
\begin{aligned}
& u_{t t}-\Delta u+\varphi(x) u_{t}=0, \quad(x, t) \in \mathbb{R}^{3} \times \mathbb{R} \\
& \left.u\right|_{t=0}=f,\left.\quad u_{t}\right|_{t=0}=g .
\end{aligned}
$$

a) Fix $x_{0} \in \mathbb{R}^{3}$ and $t_{0}>0$. Let $C=\left\{(x, t): 0 \leq t \leq t_{0},\left|x-x_{0}\right| \leq\left|t-t_{0}\right|\right\}$ be the cone of dependence for the point $\left(x_{0}, t_{0}\right)$ and define $B_{\tau}=C \cap\{t=\tau\}$. Prove that the energy

$$
e(\tau)=\frac{1}{2} \int_{B_{\tau}}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d t
$$

is decreasing and that if $u=u_{t}=0$ in $B_{0}$ then $u=0$ identically on $C$.
b) Use the fact that $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$ to conclude that the energy of the solution

$$
E(t)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(\left|u_{t}\right|^{2}+|\nabla u|^{2}\right) d t
$$

is decreasing.
6. Find the general solution of the equation

$$
x u_{x x}+u_{x y}=0 ; \quad u=u(x ; y)
$$

7. (a) Let $U \subset \mathbb{R}^{n}$ be an open bounded domain. Let $u$; $v$ be two harmonic functions in $U$, which are continuous in $U$. Show that if $u \leq v$ on the boundary $\partial U$ of $U$, then $u \leq v$ in $U$.
(b) Consider the domain $D=\left\{x \in \mathbb{R}^{n}:|x|<1\right\} \backslash\{0\}$, where $n \geq 2$. Suppose that $u$ is a harmonic function in $D$, it is continuous in $D$, and $u=0$ on the unit sphere $\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$. Prove that $u \equiv 0$ in $D$.

Hint: Compare $u$ with functions of the form const $\cdot \Phi(x)$ on domains of the form $\left\{x \in \mathbb{R}^{n}: r<|x|<1\right\}$, where $\Phi(x)$ denotes the fundamental solution on $\mathbb{R}^{n}$.

