DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2008

1. a) Solve the linear partial differential equation

$$
\mathrm{e}^{x} u_{x}+u_{y}=u \quad \text { with } u(x, 0)=g(x) .
$$

b) Solve the nonlinear partial differential equation

$$
x^{2} u_{x}+y^{2} u_{y}=u^{2} \quad \text { with } u=1 \text { on the line } y=2 x
$$

2. Let $c \in \mathbb{R}$. Write down an explicit formula for a solution of

$$
\begin{array}{ll}
u_{t}-\Delta u+c u=f & \text { in } \mathbb{R}^{n} \times(0, \infty) \\
u=g & \text { on } \mathbb{R}^{n} \times t=0 .
\end{array}
$$

3. Let $B(0,1)$ be the unit ball in \mathbb{R}^{n}.
a) If

$$
u(x)=|x|^{-\alpha}, \quad x \in B(0,1)
$$

For what values of α, n, p the function u is in the Sobolev space $W^{1, p}(B(0,1))$.
b) If $u(x)=\ln \ln \left(1+\frac{1}{|x|}\right)$, for $x \in B(0,1)$, Prove that $\left.u \in W^{1, n}(B(0,1))\right)$ but not in $L^{\infty}(B(0,1))$.
4. Let $g: R^{2} \times(-1,1) \rightarrow R^{2}$ be of class C^{4} and consider the mapping $x \rightarrow g(x, \mu)$ where $g(0, \mu) \equiv 0$ and $\frac{\partial g}{\partial x}(0, \mu)$ has complex eigenvalues $\lambda(\mu), \bar{\lambda}(\mu)$ that leave the unit circle as μ increases through 0 , i.e. $|\lambda(0)|=1$ and $\frac{d|\lambda(\mu)|}{d \mu}>0$. After a linear transformation and letting $z=x_{1}+i x_{2}$ and $\bar{z}=x_{1}-i x_{2}$, the mapping takes the form

$$
z \rightarrow \lambda(\mu) z+\ldots
$$

(a) State conditions on $\lambda(0)$ that allow the mapping to be transformed into the Normal Form

$$
\begin{equation*}
w \rightarrow w e^{\alpha(\mu)+\beta(\mu)|w|^{2}}+\mathcal{O}\left(|w|^{4}\right) . \tag{1}
\end{equation*}
$$

(b) Give a condition on $\beta(0)$ that guarantees a Neimark-Sacker bifurcation of the origin into an asymptotically stable invariant curve $\Gamma(\mu)$ for $0<\mu<\mu *$ surrounding the origin.
(c) Write down an expression for the first approximation to Γ. Hint: Drop the $\mathcal{O}\left(|w|^{4}\right)$ terms and separate real and imaginary parts in the expression in the exponent of (1).
5. Consider the vector field

$$
\begin{aligned}
x^{\prime} & =x^{2} y-x^{5} \\
y^{\prime} & =-y+x^{2} .
\end{aligned}
$$

Near $(0,0)$ there is a Center Manifold, the graph of $y=h(x)=a x^{2}+b x^{3}+\ldots$. Write down the first order differential equation satisfied by the function h and find a and b.
6. Consider the product space $\mathbb{R}^{n} \times \mathbb{R}$ and let $P: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ be projection onto the second factor, $P(x, t)=t$. For two t values, $t_{1}<t_{2}$ define the "copies" of \mathbb{R}^{n}, $X=P^{-1}\left(t_{1}\right)$ and $Y=P^{-1}\left(t_{2}\right)$ and the mapping

$$
T: X \rightarrow Y \quad \text { where } \quad y=T(x)=\phi\left(t_{2}, t_{1}, x\right)
$$

and $\phi\left(t_{2}, t_{1}, x\right)$ is the solution $\phi\left(t, t_{1}, x\right)$ of $y^{\prime}=f(t, y), \quad y\left(t_{1}\right)=x$, evaluated at t_{2}. Assume that $f \in C^{1}$ and the divergence,

$$
\operatorname{div} f \doteq \frac{\partial f_{1}}{\partial y_{1}}+\frac{\partial f_{2}}{\partial y_{2}}+\cdots+\frac{\partial f_{n}}{\partial y_{n}}=0 .
$$

Show (1) T is a diffeomorphism and (2) T is (Lebesgue)measure preserving.

