DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2008

1. a) Solve the linear partial differential equation

$$e^x u_x + u_y = u$$
 with $u(x, 0) = g(x)$.

b) Solve the nonlinear partial differential equation

$$x^2u_x + y^2u_y = u^2$$
 with $u = 1$ on the line $y = 2x$

2. Let $c \in \mathbb{R}$. Write down an explicit formula for a solution of

$$u_t - \Delta u + cu = f \qquad \text{in } \mathbb{R}^n \times (0, \infty)$$
$$u = g \qquad \text{on } \mathbb{R}^n \times t = 0.$$

3. Let B(0,1) be the unit ball in ℝⁿ.
a) If

$$u(x) = |x|^{-\alpha}, \quad x \in B(0,1)$$

For what values of α, n, p the function u is in the Sobolev space $W^{1,p}(B(0,1))$. b) If $u(x) = \ln \ln(1 + \frac{1}{|x|})$, for $x \in B(0,1)$, Prove that $u \in W^{1,n}(B(0,1))$ but not in $L^{\infty}(B(0,1))$. 4. Let $g: R^2 \times (-1, 1) \to R^2$ be of class C^4 and consider the mapping $x \to g(x, \mu)$ where $g(0, \mu) \equiv 0$ and $\frac{\partial g}{\partial x}(0, \mu)$ has complex eigenvalues $\lambda(\mu), \bar{\lambda}(\mu)$ that leave the unit circle as μ increases through 0, i.e. $|\lambda(0)| = 1$ and $\frac{d|\lambda(\mu)|}{d\mu} > 0$. After a linear transformation and letting $z = x_1 + ix_2$ and $\bar{z} = x_1 - ix_2$, the mapping takes the form

$$z \to \lambda(\mu)z + \dots$$

(a) State conditions on $\lambda(0)$ that allow the mapping to be transformed into the Normal Form

$$w \to w e^{\alpha(\mu) + \beta(\mu)|w|^2} + \mathcal{O}(|w|^4).$$
(1)

- (b) Give a condition on $\beta(0)$ that guarantees a Neimark-Sacker bifurcation of the origin into an asymptotically stable invariant curve $\Gamma(\mu)$ for $0 < \mu < \mu *$ surrounding the origin.
- (c) Write down an expression for the first approximation to Γ . **Hint:** Drop the $\mathcal{O}(|w|^4)$ terms and separate real and imaginary parts in the expression in the exponent of (1).
- 5. Consider the vector field

$$\begin{array}{rcl} x' &=& x^2y - x^5 \\ y' &=& -y + x^2. \end{array}$$

Near (0,0) there is a Center Manifold, the graph of $y = h(x) = ax^2 + bx^3 + \dots$. Write down the first order differential equation satisfied by the function h and find a and b.

6. Consider the product space $\mathbb{R}^n \times \mathbb{R}$ and let $P : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ be projection onto the second factor, P(x,t) = t. For two t values, $t_1 < t_2$ define the "copies" of \mathbb{R}^n , $X = P^{-1}(t_1)$ and $Y = P^{-1}(t_2)$ and the mapping

$$T: X \to Y$$
 where $y = T(x) = \phi(t_2, t_1, x)$

and $\phi(t_2, t_1, x)$ is the solution $\phi(t, t_1, x)$ of y' = f(t, y), $y(t_1) = x$, evaluated at t_2 . Assume that $f \in C^1$ and the divergence,

div
$$f \doteq \frac{\partial f_1}{\partial y_1} + \frac{\partial f_2}{\partial y_2} + \dots + \frac{\partial f_n}{\partial y_n} = 0$$

Show (1) T is a diffeomorphism and (2) T is (Lebesgue)measure preserving.