ALGEBRA QUALIFYING EXAM, Fall 2008

1. Let p, q be odd primes with $p>7$ and $q>8 p$. Let G be a group of order $8 p q$.
(a) Show that G has a normal subgroup of order $p q$.
(b) Show that G has a normal subgroup of index 2 .
(c) Show that G has a nontrivial center.
2. Let $G=L_{1} \times \ldots \times L_{t}$, for $t>1$, where all of the L_{i} are simple groups. (a) Assuming that all of the L_{i} are nonabelian, prove that the only normal subgroups of G are direct products of some subset of the L_{i}. (Hint: Let N be a normal subgroup of G and show that if the i th projection of N into L_{i} is nontrivial, then N contains L_{i}).
(b) Now suppose that all $L_{i} \cong L$, with L simple (possibly abelian). Show that there is no nontrivial proper subgroup of G which is invariant under all automorphisms of G. (Hint: Consider the abelian and nonabelian cases separately.)
(c) Suppose that $G=L \times L$ with L a nonabelian simple group. Let $D=\{(x, x) \mid x \in L\}$ be the diagonal subgroup. Show that D is a maximal subgroup of G.
3. Consider $f(x)=x^{4}+x^{2}+9 \in \mathbb{Q}[x]$.
(a) Show that $f(x)$ is irreducible over \mathbb{Q}. (Hint: first show that the only possible factors are quadratic, and then see what happens when x is replaced by $-x$.)
(b) Find the Galois group of $f(x)$ over \mathbb{Q}.
(c) Describe the splitting field of f over \mathbb{Q} and the intermediate fields.
4. Let R be a commutative Noetherian ring. Show that any surjective ring endomorphism $\phi: R \rightarrow R$ is an automorphism.
(Hint: consider the iterations $\phi, \phi^{2}, \phi^{3}, \ldots$)
5. Let I be the ideal

$$
I=\left(x^{37} y^{31} z^{29} t^{23}, x^{3}+y^{5}, y^{7}+z^{11}, z^{13}+t^{17}\right) \subset \mathbb{C}[x, y, z, t]
$$

If $f(x, y, z, t)$ is any polynomial without constant term show that some power of f is in I.
6. Let A be a finite-dimensional algebra over \mathbb{C}. Show that if $x, y \in A$ such that $x y=1$, then also $y x=1$.
7. Let A, B, C be finitely generated modules over a PID R. Show that B is isomorphic to C if and only if $A \oplus B$ is isomorphic to $A \oplus C$.

