1. Let G be a group of order 105 .
(a) Show G has a normal subgroup of index 3 .
(b) Show $Z(G) \neq 1$.
(c) Determine all possibilities for G.
2. Let p be a prime. A group G is called p-divisible if the map $x \rightarrow x^{p}$ is surjective. Suppose that G is a finitely generated abelian group. Show that G is p-divisible if and only if G is finite and p does not divide the order of G.
3. Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Suppose that $f \in R$ is irreducible. If $g(a)=h(a)$ whenever $f(a)=0$, show that $g+(f)=h+(f)$ in $R /(f)$.
4. Let F be a field. Suppose that A is an F-subalgebra of $M_{n}(F)$ containing the identity of $M_{n}(F)$.
(a) If A is a domain, show that A is a division algebra and $\operatorname{dim} A \leq$ n.
(b) If A is simple, show that $(\operatorname{dim} A) \mid n^{2}$ (hint: Let V be the space of column vectors of size n over F - this is a left $M_{n}(F)$-module of dimension n; show that V is a direct sum of say s isomorphic copies of a simple A-module U. Relate the dimension of A and the dimension of U).
5. Let p be a prime. Let $F:=\mathbb{F}_{p^{n}}$ be the field of size of p^{n}. Let $f(x) \in F[x]$ be irreducible of degree t.
(a) Show that the splitting field for f has size $p^{n t}$.
(b) If $n=1$, show that $f(x) \mid\left(x^{p^{m}}-x\right)$ if and only if $t \mid m$.
(c) How many irreducible polynomials of degree 6 are there over \mathbb{F}_{2} ?
6. Let R be a commutative ring with 1 . Assume that $R=a_{1} R+\ldots+$ $a_{n} R$ for some $a_{i} \in R$. Let $M=:\left\{\left(r_{1}, \ldots, r_{n}\right) \in R^{n} \mid \sum a_{i} r_{i}=0\right\}$. Show that M is a projective R-module and can be generated by n elements as an R-module.
