## Geometry and Topology Graduate Exam

Spring 2022
Solve as many problems as you can. Partial credit will be given to partial solutions.
Problem 1. Let $B^{3}$ be the solid ball of radius 2 centered at the origin in $\mathbb{R}^{3}$. Let $S^{1}$ be the unit circle in the $x y$-plane. Compute the homology groups of $B^{3}-S^{1}$.

Problem 2. Prove that the fundamental group and the homology groups (in every degree) of $\mathbb{R} P^{3}$ and $\mathbb{R} P^{2} \vee S^{3}$ are isomorphic, but that the homology groups of their universal covering spaces are not.

Problem 3. Consider the vector fields $v_{k}=x^{k} \frac{\partial}{\partial x}$ on $\mathbb{R}$, where $k \geq 0$.
(1) Find the Lie bracket $\left[v_{i}, v_{j}\right]$.
(2) Do the flows of $v_{i}$ and $v_{j}$ commute?
(3) Find the flow of $v_{2}$.
(4) Is $v_{2}$ complete on $\mathbb{R}$, i.e. does every one of its flow curves exist for all time?

Problem 4. (intersecting with a plane and a cylinder) Let $M^{m}$ be any submanifold of $\mathbb{R}^{N}$ with $N \geq 3$. Show that there exist real numbers $a, b>0$ so that the intersection $M \cap\left\{x_{N}=a\right\} \cap\left\{x_{1}^{2}+x_{2}^{2}=b^{2}\right\}$ is a submanifold (of $M$ and hence $\mathbb{R}^{N}$ ) of dimension $m-2$. Note: The condition $N \geq 3$ is not strictly necessary, it is imposed simply to ensure that $x_{N}, x_{1}$, and $x_{2}$ are all different coordinates to avoid the case $\left\{x_{N}=a\right\} \cap\left\{x_{1}^{2}+x_{2}^{2}=b^{2}\right\}$ is empty (in which case the result would be vacuously still true).

## Problem 5.

Say whether each assertion is true or false, with complete justification.
(1) $S^{3} \backslash\{3$ points $\}$ is homotopy equivalent to $S^{2} \backslash\{2$ points $\}$.
(2) Any continuous map $S^{2} \rightarrow S^{1} \times S^{1}$ is null homotopic.

Problem 6. Let $f: M^{n} \rightarrow N^{n}$ be a smooth map between compact oriented manifolds of the same dimension $n>1$, and suppose $f$ factors as $M^{n} \rightarrow S^{1} \times$ $\mathbb{R}^{n-1} \rightarrow N^{n}$ (with $n-1>0$ ). Show that in any neighborhood $U$ of any point $x \in N^{n}$, there exists a point $y \in U$ with $f^{-1}(y)$ having an even number of points.

Problem 7. Let $M^{m}$ be a manifold and $\lambda \in \Omega^{1}(M)$ a closed 1-form $(d \lambda=0)$. Suppose $f: S^{2} \rightarrow M$ is a smooth map, where $S^{2}$ is the standard unit 2-sphere in $\mathbb{R}^{3}$, and let $\left.f\right|_{S^{1}}$ denote the restriction of $f$ to the equator circle $S^{1}=\{z=0\} \cap S^{2} \subset S^{2}$. Show that

$$
\int_{S^{1}}\left(\left.f\right|_{S^{1}}\right)^{*} \lambda=0
$$

