ALGEBRA QUALIFYING EXAM SPRING 2022

PROBLEM 1. Consider the polynomial ring $\mathbb{C}\left[x_{i j}, 1 \leq i, j \leq n\right]$ as the algebra of polynomial functions on the space of $n \times n$ matrices $M_{n}(\mathbb{C})$. Let $\mathcal{N} \subset M_{n}(\mathbb{C})$ be the set of all nilpotent matrices. Introduce n polynomials $P_{j} \in \mathbb{C}\left[x_{i j}, 1 \leq i, j \leq n\right], 1 \leq j \leq n$, defined by $P_{j}(A)=\operatorname{Tr} A^{j}$. Prove that a polynomial $Q \in \mathbb{C}\left[x_{i j}, 1 \leq i, j \leq n\right]$ vanishes on \mathcal{N} if and only if some power of Q belongs to the ideal ($P_{1}, P_{2}, \ldots, P_{n}$).

PROBLEM 2. Let $R \subset S$ be an integral ring extension. Prove that $a \in R$ is invertible as an element of R if and only if it is as an element of S.

PROBLEM 3. Let R be a commutative ring and M a finitely generated R-module.
(a) Prove that if R is a principal ideal domain, then M is projective if and only if M is torsion free.
(b) Answer the question: does the assertion (a) remain valid if R is assumed to be a local domain?

PROBLEM 4. Show that the center of a simple ring is a field and that the center of a semi-simple ring is a finite direct product of fields.

PROBLEM 5. Set $n=\left|\mathrm{SL}_{2}\left(\mathbb{F}_{7}\right)\right|$. For each $p \mid n$, find a Sylow p-subgroup of $\mathrm{SL}_{2}\left(\mathbb{F}_{7}\right)$.
PROBLEM 6. Find the Galois group of the polynomial $x^{4}-4 x^{2}-21$ (over \mathbb{Q}). Answer the question: is this polynomial solvable in radicals?

