PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM Spring 2021

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Solve the following initial value problems and verify your solutions
(a) $2 u_{x}+3 u_{t}=u^{2}, \quad u(x, 0)=h(x), t>0, \quad x \in \mathbb{R}, \quad$ (here h is given)
(b) $u_{t}=x^{2} u u_{x}, \quad u(x, 0)=x, t>0, \quad x \in \mathbb{R}$
(c) $x u_{x}+y u_{y}+u_{z}=u, \quad u(x, y, 0)=h(x, y), \quad z>0, \quad(x, y) \in \mathbb{R}^{2} \quad$ (here h is given)
(d) $u_{x}^{2}+u_{y}^{2}=u^{2} \quad$ (here find the characteristic equations only).
2. Let B be the unit disc in \mathbb{R}^{2}, and ∂B the unit circle. Let f and g be two analytic functions defined on ∂B.
(a) Prove that for any point $x \in \partial B$, there exists a neighborhood U of x and a function u harmonic in $U \cap B$, such that $u=f$, and the outward normal derivative $\partial_{\nu} u=g$, on $U \cap \partial B$.
(b) Does there always exist a function u harmonic in B, such that $u=f$ and $\partial_{\nu} u=g$ on ∂B ? Why or why not?
3. Let $\theta(x, t)$ be a strictly positive smooth solution of the following heat equation

$$
\theta_{t}-\nu \theta_{x x}=0, \quad x \in \mathbb{R}, \quad t>0
$$

where $\nu>0$ is a positive constant.
(a) Show that $u=-\frac{2 \nu \theta_{x}}{\theta}$ satisfies

$$
\begin{equation*}
u_{t}+u u_{x}-\nu u_{x x}=0, \quad x \in \mathbb{R}, \quad t>0 . \tag{1}
\end{equation*}
$$

(b) For $u_{0} \in C_{c}^{2}(\mathbb{R})$, find a solution to (1) with initial data $u(x, 0)=u_{0}$ for which $\lim _{t \rightarrow \infty} u(x, t)=0$.

