PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM Spring 2021

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

- 1. Solve the following initial value problems and verify your solutions
 - (a) $2u_x + 3u_t = u^2$, $u(x, 0) = h(x), t > 0, x \in \mathbb{R}$, (here *h* is given)
 - (b) $u_t = x^2 u u_x$, u(x, 0) = x, t > 0, $x \in \mathbb{R}$
 - (c) $xu_x + yu_y + u_z = u$, u(x, y, 0) = h(x, y), z > 0, $(x, y) \in \mathbb{R}^2$ (here *h* is given)
 - (d) $u_x^2 + u_y^2 = u^2$ (here find the characteristic equations only).
- 2. Let B be the unit disc in \mathbb{R}^2 , and ∂B the unit circle. Let f and g be two analytic functions defined on ∂B .
 - (a) Prove that for any point $x \in \partial B$, there exists a neighborhood U of x and a function u harmonic in $U \cap B$, such that u = f, and the outward normal derivative $\partial_{\nu} u = g$, on $U \cap \partial B$.
 - (b) Does there always exist a function u harmonic in B, such that u = f and $\partial_{\nu} u = g$ on ∂B ? Why or why not?
- 3. Let $\theta(x,t)$ be a strictly positive smooth solution of the following heat equation

$$\theta_t - \nu \theta_{xx} = 0, \quad x \in \mathbb{R}, \quad t > 0$$

where $\nu > 0$ is a positive constant.

(a) Show that $u = -\frac{2\nu\theta_x}{\theta}$ satisfies

$$u_t + uu_x - \nu u_{xx} = 0, \quad x \in \mathbb{R}, \quad t > 0.$$

$$\tag{1}$$

(b) For $u_0 \in C_c^2(\mathbb{R})$, find a solution to (1) with initial data $u(x,0) = u_0$ for which $\lim_{t\to\infty} u(x,t) = 0$.