- 1. Let X_1, \ldots, X_n be i.i.d. observations with normal distribution $N(\mu, 1)$, where it is known that $\mu \ge 0$.
 - 1.1. Find the maximum likelihood estimator $\hat{\mu}$ of μ .
 - 1.2. Derive the asymptotic distribution, as $n \to \infty$ of $\sqrt{n}(\hat{\mu} \mu)$, when the true mean satisfies $\mu > 0$; please provide a direct proof not relying on any general result about MLEs.
 - 1.3. Derive the asymptotic distribution, as $n \to \infty$, of $\sqrt{n}(\hat{\mu}-\mu)$, that is, the limit of the probability $P(\sqrt{n}(\hat{\mu}-\mu) \leq x)$ for all values of $x \in \mathbb{R}$, when the true mean μ is equal to 0.
 - 1.4. Why would typical general results about the asymptotic distribution of maximum likelihood estimators not apply in part (3)?
- 2. 2.1. Show that if W is UMVU for a parameter $\theta \in \mathbb{R}$, then for any U that is an unbiased estimator of 0 with finite variance, that is, $E_{\theta}[U] = 0$ and $E_{\theta}[U^2] < \infty$ for all $\theta \in \mathbb{R}$, we have $E_{\theta}[WU] = 0$ for all $\theta \in \mathbb{R}$. (Hint: Construct a family of unbiased estimators of θ using W and U.)
 - 2.2. Let X be a sample from the uniform distribution on the interval $[\theta 1/2, \theta + 1/2]$, where $\theta \in \mathbb{R}$ is unknown. Find a continuous function $u(\cdot)$ such that U = u(X) is an unbiased estimator of zero and $P_{\theta}(U \neq 0) = 1$. (Hint: consider periodic functions.)
 - 2.3. Let $g : \mathbb{R} \to \mathbb{R}$ be a nonconstant differentiable function of $\theta \in \mathbb{R}$. Show that there does not exist a UMVU of $g(\theta)$ of the form w(X), a function of the observation X that is uniformly distributed over the interval $[\theta - 1/2, \theta + 1/2]$. You may assume you are given an unbiased estimator U of zero that satisfies the conditions in part (2), and that W = w(X) with w(x) continuous in x. (Hint: Use part (1) and differentiate the equalities $E_{\theta}[U] = 0$ and $E_{\theta}[WU] = 0$ with respect to $\theta \in \mathbb{R}$.)