Geometry and Topology Graduate Exam

Spring 2021
Solve as many problems as you can. Partial credit will be given to partial solutions.
Problem 1. Let $X=S^{1} \times S^{1}-\{p, q\}$, with $p \neq q$, be the twice punctured 2-dimensional torus.
(1) Compute the homology groups $H_{n}(X, \mathbb{Z})$.
(2) Compute the fundamental group of X.

Problem 2. Let X be the figure eight, union of two circles meeting in exactly one point x_{0}. Recall that the fundamental group $\pi_{1}\left(X ; x_{0}\right)$ is the free group on two generators a and b, respectively going once around the first and the second circle. Draw a covering $p: \widetilde{X} \rightarrow X$ such that \widetilde{X} is connected and $p_{*}\left(\pi_{1}\left(\widetilde{X} ; \widetilde{x}_{0}\right)\right)$ is the subgroup $G \subset \pi_{1}\left(X ; x_{0}\right)$ generated by the subset $\left\{a^{2}, b^{2}, a b a, b a b\right\}$.

Use this construction to decide whether this subgroup G is normal or not.
Problem 3. Let M be a differentiable (not necessarily orientable) manifold. Show that its cotangent bundle

$$
T^{*} M=\left\{(x, u) ; x \in M \text { and } u: T_{x} M \rightarrow \mathbb{R} \text { linear }\right\}
$$

is a manifold, and is orientable.

Problem 4.

Show that, if a map $f: S^{n} \rightarrow S^{n}$ has no fixed points, then its degree is equal to $(-1)^{n+1}$. Possible hint: Show that f is homotopic to a simple map.

Problem 5. Let T be the torus in \mathbb{R}^{3} obtained by revolving the circle

$$
\left\{(x, y, z) \in \mathbb{R}^{3} ;(x-2)^{2}+y^{2}=1 \text { and } z=0\right\}
$$

around the y-axis. Compute the integral

$$
\int_{T} x d y \wedge d z-y d x \wedge d z+z d x \wedge d y
$$

Problem 6. Let $f: M \rightarrow N$ be a differentiable map between two connected compact orientable manifolds of the same dimension n. Suppose that there exists a nonempty open subset U such that $f^{-1}(U)$ can be written as a disjoint union $U_{1} \coprod U_{2} \coprod U_{3}$ for which each restriction $\left.f\right|_{U_{i}}: U_{i} \rightarrow U$ is a diffeomorphism. Show that f is necessarily surjective.

Problem 7. Consider the differential 2-form $\omega=\frac{d x \wedge d y}{x^{2}+y^{2}}$ on $X=\mathbb{R}^{2}-\{0\}$, and denote by $Y=\left\{(x, y) \in \mathbb{R}^{2} ; x^{2}+y^{2}=1\right\}$ the unit circle inside X. Prove that, for the unit disk D^{2} and for any smooth map $f: D^{2} \rightarrow X$ which sends the boundary of the disc to Y,

$$
\int_{D^{2}} f^{*}(\omega)=0
$$

where $f^{*}(\omega) \in \Omega^{2}\left(D^{2}\right)$ (also denoted as $\Omega^{2}(f)(\omega)$) is the pull back of ω under f.

