Numerical Analysis Preliminary Examination Spring 2021

January 22, 2021

Problem 1. Consider the normed linear space \mathbb{C}^n with vector norm $\|\cdot\|_2$ and let $A \in \mathbb{C}^{n \times n}$. The matrix norm $\|\cdot\|$ induced by the vector norm $\|\cdot\|_2$ is defined as $\|A\| = \sup_{x \neq 0} \frac{\|Ax\|_2}{\|x\|_2}$.

- (a) Show that $||A|| = \sup_{||x||_2=1} ||Ax||_2$.
- (b) Show that in fact for each $A \in \mathbb{C}^{n \times n}$ there exists a $y \in \mathbb{C}^n$ with $|| y ||_2 = 1$ such that $|| A || = || A y ||_2$.
- (c) Use part (b) above and the eigenvalues $\{\lambda_j\}_{j=1}^n$ and corresponding eigenvectors $\{u_j\}_{j=1}^n$ of the matrix $A^H A \in \mathbb{C}^{n \times n}$ $(A^H = \bar{A}^T)$ to show that $||A|| \leq \sqrt{\max_j \lambda_j}$.
- (d) Show that in fact $||A|| = \sqrt{\max_j \lambda_j}$.

Problem 2. Let A be an $m \times n$ matrix where m > n. We are particularly interested in the case when A does not have full rank. Suppose $b \in \mathbb{R}^m$ is a known vector. Consider the family of functions

$$\psi_{\alpha}(x) = ||b - Ax||_{2}^{2} + \alpha ||x||_{2}^{2}$$

where $\alpha > 0$ is a positive number.

- (a) Find $\nabla \psi_{\alpha}$ and use it to derive the equivalent of the normal equations for finding the value(s) of x that minimize(s) ψ_{α} .
- (b) Show that the minimum is attained at a unique vector $x = x_{\alpha}$.
- (c) Let x^* be the solution of the least squares problem

$$\min_{x \in \mathbb{R}^n} ||b - Ax||_2^2$$

of minimum norm. Show that if $\alpha = \alpha_k \to 0$ as $k \to \infty$ then $x_{\alpha_k} \to x^*$.

Problem 3. Suppose A is an $n \times n$ symmetric positive definite matrix with corresponding A-inner product and A-norm defined by

$$\langle x, y \rangle_A = x^T A y$$
 and $||x||_A^2 = x^T A x.$

Consider the system of equations Ax = b. Recall, the conjugate gradient method is an iterative method for finding the solution x^* that starts with a vector x_0 and finds iterates x_1, x_2, \ldots as follows:

$$r_i = b - Ax_i$$

$$p_i = r_i - \sum_{k < i} \frac{p_k^T A r_i}{||p_k||_A^2} p_k$$

$$x_{i+1} = x_i + \frac{p_i^T r_i}{||p_i||_A^2} p_i$$

Notice the definition of the p_i 's uses Gram-Schmidt to ensure they are mutually A-orthogonal. For simplicity, you may assume in this problem that $r_i \neq 0$ for i = 0, 1, ..., n-1.

(a) Let x^* be the solution to Ax = b. Show

$$x^* = \sum_{i=0}^{n-1} \left(\frac{p_i^T b}{||p_i||_A^2} \right) p_i.$$

(b) Writing $x_0 = \sum_{i=0}^{n-1} \beta_i p_i$, show

$$x_{k} = \sum_{i=0}^{k-1} \left(\frac{p_{i}^{T} b}{||p_{i}||_{A}^{2}} \right) p_{i} + \sum_{i=k}^{n-1} \beta_{i} p_{i}$$

for k = 1, 2, ..., n.

(c) Use parts (a) and (b) to show x_k minimizes the function $\psi(x) = ||x - x^*||_A^2$ in the affine space

$$S_{k-1} = x_0 + \text{Span}\{p_0, p_1, \dots, p_{k-1}\}$$

and deduce that r_k is orthogonal to $p_0, p_1, \ldots, p_{k-1}$ (with respect to the regular inner product).

(d) Show

$$\operatorname{Span}\{r_0, r_1, \dots, r_k\} = \operatorname{Span}\{p_0, p_1, \dots, p_k\} = \operatorname{Span}\{r_0, Ar_0, \dots, A^k r_0\}$$

for $k = 0, 1, \dots, n - 1$.

(e) Show that for each k = 2, 3, ..., n - 1, r_k is A-orthogonal to p_i for $i \le k - 2$. What is the significance of this in terms of the execution of the conjugate gradient method?

Problem 4.

(a) Let $A = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$ be the $n \times n$ matrix A whose entries are all ones. Find all the eigenvalues and a full set of orthogonal eigenvectors of A. Make sure you explain how

eigenvalues and a full set of orthogonal eigenvectors of A. Make sure you explain how you got your answers. Hint: You might not want to use the determinant.

(b) One of the difficulties in calculating eigenvalues and eigenvectors is their sensitivity with respect to the entries in the matrix. For $\varepsilon \in \mathbb{R}$ Consider the following $n \times n$ matrix A_{ε} : ones on the first sub-diagonal, ε (a generally small nonzero number) in the upper right hand corner and zeros elsewhere. For example, when n = 3 the matrix A_{ε} is shown here: $A_{\varepsilon} = \begin{bmatrix} 0 & 0 & \varepsilon \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. What is the effect on the eigenvalues and eigenvectors of introducing this small nonzero entry ε into the matrix A_0 (i.e. the matrix A_{ε} with $\varepsilon = 0$).