Numerical Analysis Preliminary Examination Spring 2020

Problem 1. Consider a matrix $A \in \mathbb{C}^{n \times m}$. The norm $||A||_F$ is given by

$$||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m |A_{i,j}|^2}.$$

Show that

$$||A||_F = \sqrt{\sum_{k=1}^{\min\{n,m\}} \sigma_k^2}$$

where σ_k , $k = 1, 2, ..., \min\{n, m\}$ are the singular values of the matrix A.

Problem 2. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $b \in \mathbb{R}^n$. Consider the conjugate gradient method for finding the unique solution x^* to Ax = b. Let $x_0 \in \mathbb{R}^n$ be the initial vector used in the method and let $r_0 = b - Ax_0$. Suppose the method is carried out to infinite precision.

- (a) Prove the method finds x^* in one step (in other words, $x_1 = x^*$) if and only if r_0 is either the zero vector or an eigenvector of A.
- (b) Suppose A has $m \leq n$ distinct eigenvalues. Show the method finds x^* in at most m iterations.

Problem 3. Let $A = A_{ij} \in \mathbb{C}^{m \times n}$ be a complex-valued matrix. The matrix $X \in \mathbb{C}^{n \times m}$ is said to satisfy the Moore-Penrose equations (MP) if:

$$AXA = A$$
$$XAX = X$$
$$(AX)^* = AX$$
$$(XA)^* = XA$$

(where, for $B \in \mathbb{C}^{m \times n}$, B^* denotes the complex conjugate transpose, $B^* = \overline{B}^T$).

- (a) Given a matrix A, show there is at most one matrix X that satisfies (MP).
- (b) Suppose $A = V\Sigma W^*$ is a singular value decomposition of A. Define A^{\dagger} as follows. - For a complex scalar λ , let

$$\lambda^{\dagger} = \left\{ \begin{array}{ll} \frac{1}{\lambda} & \lambda \neq 0\\ 0 & \text{otherwise} \end{array} \right.$$

- If A is diagonal (i.e. $A_{ij} = 0$ whenever $i \neq j$) define $A^{\dagger} \in \mathbb{C}^{n \times m}$ by

$$(A^{\dagger})_{ij} = (A_{ji})^{\dagger}$$

– Otherwise, define

$$A^{\dagger} = W \Sigma^{\dagger} V^*.$$

Show that A^{\dagger} is a solution to (MP).

(c) For $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$, show that $x = A^{\dagger}b \in \mathbb{C}^n$ is the vector of minimum norm that minimizes $||Ax - b||_2$.

 $\mathbf{2}$

Problem 4. Consider the matrix

$$A = \begin{bmatrix} 2 & 10^2 & 10^2 \\ 10^{-2} & 1 & 10^2 \\ 10^{-2} & 10^{-2} & 2 \end{bmatrix}.$$

Show that the eigenvalues of A lie in $D_{\varepsilon}(1) \cup D_{\varepsilon}(2)$ where $\varepsilon = 10^{2/3} + 10^{-2/3}$ and the notation $D_{\varepsilon}(x)$ should be interpreted as

$$D_{\varepsilon}(x) = \{\lambda \in \mathbb{C} : |\lambda - x| < \varepsilon\}.$$

Hint: You might want to use a matrix of the form $T = \text{diag}\{1, \alpha, \alpha^2\}$ with a carefully selected value of α .