Numerical Analysis Preliminary Examination Spring 2020

Problem 1. Consider a matrix $A \in \mathbb{C}^{n \times m}$. The norm $\|A\|_{F}$ is given by

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{m}\left|A_{i, j}\right|^{2}} .
$$

Show that

$$
\|A\|_{F}=\sqrt{\sum_{k=1}^{\min \{n, m\}} \sigma_{k}^{2}}
$$

where $\sigma_{k}, k=1,2, \ldots, \min \{n, m\}$ are the singular values of the matrix A.
Problem 2. Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite and $b \in \mathbb{R}^{n}$. Consider the conjugate gradient method for finding the unique solution x^{*} to $A x=b$. Let $x_{0} \in \mathbb{R}^{n}$ be the initial vector used in the method and let $r_{0}=b-A x_{0}$. Suppose the method is carried out to infinite precision.
(a) Prove the method finds x^{*} in one step (in other words, $x_{1}=x^{*}$) if and only if r_{0} is either the zero vector or an eigenvector of A.
(b) Suppose A has $m \leq n$ distinct eigenvalues. Show the method finds x^{*} in at most m iterations.

Problem 3. Let $A=A_{i j} \in \mathbb{C}^{m \times n}$ be a complex-valued matrix. The matrix $X \in \mathbb{C}^{n \times m}$ is said to satisfy the Moore-Penrose equations (MP) if:

$$
\begin{aligned}
A X A & =A \\
X A X & =X \\
(A X)^{*} & =A X \\
(X A)^{*} & =X A
\end{aligned}
$$

(where, for $B \in \mathbb{C}^{m \times n}$, B^{*} denotes the complex conjugate transpose, $B^{*}=\bar{B}^{T}$).
(a) Given a matrix A, show there is at most one matrix X that satisfies (MP).
(b) Suppose $A=V \Sigma W^{*}$ is a singular value decomposition of A. Define A^{\dagger} as follows.

- For a complex scalar λ, let

$$
\lambda^{\dagger}= \begin{cases}\frac{1}{\lambda} & \lambda \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- If A is diagonal (i.e. $A_{i j}=0$ whenever $i \neq j$) define $A^{\dagger} \in \mathbb{C}^{n \times m}$ by

$$
\left(A^{\dagger}\right)_{i j}=\left(A_{j i}\right)^{\dagger} .
$$

- Otherwise, define

$$
A^{\dagger}=W \Sigma^{\dagger} V^{*}
$$

Show that A^{\dagger} is a solution to (MP).
(c) For $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^{m}$, show that $x=A^{\dagger} b \in \mathbb{C}^{n}$ is the vector of minimum norm that minimizes $\|A x-b\|_{2}$.

Problem 4. Consider the matrix

$$
A=\left[\begin{array}{ccc}
2 & 10^{2} & 10^{2} \\
10^{-2} & 1 & 10^{2} \\
10^{-2} & 10^{-2} & 2
\end{array}\right]
$$

Show that the eigenvalues of A lie in $D_{\varepsilon}(1) \cup D_{\varepsilon}(2)$ where $\varepsilon=10^{2 / 3}+10^{-2 / 3}$ and the notation $D_{\varepsilon}(x)$ should be interpreted as

$$
D_{\varepsilon}(x)=\{\lambda \in \mathbb{C}:|\lambda-x|<\varepsilon\} .
$$

Hint: You might want to use a matrix of the form $T=\operatorname{diag}\left\{1, \alpha, \alpha^{2}\right\}$ with a carefully selected value of α.

