PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM Spring 2019

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Let Ω be a bounded domain (open, connected) in \mathbb{R}^{n}. Suppose that $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a solution of

$$
\Delta u+\sum_{k=1}^{n} a_{k}(x) \partial_{x_{k}} u+c(x) u=0
$$

where $a_{k}, c \in C(\bar{\Omega})$ and $c<0$ in Ω. Show that if $u=0$ on $\partial \Omega$, then $u=0$ in all of Ω.
2. Solve the equation

$$
\partial_{t} u+x \partial_{x} u+u=0
$$

with initial data $u(0, x)=f(x)$, where f is a compactly supported smooth function on \mathbb{R}. Sketch the graph of $u(t, x)$ as a function of x for a non-trivial compactly supported initial datum of your choice for $t=0, t=R$ and $t=-R$ for R large (what happens to the support and amplitude?)
3. Suppose $u(t, x)$ is a function on $\mathbb{R} \times \mathbb{R}^{3}$ that satisfies the nonlinear wave equation

$$
\left(\partial_{t}^{2}-\Delta\right) u=u^{3} .
$$

Assume that $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ and that $u(t, x)$ is compactly supported in x for each t. Define the energy

$$
E(t)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u(t, x)|^{2}+\left(\partial_{t} u(t, x)\right)^{2}\right) \mathrm{d} x .
$$

(a) Prove that

$$
\partial_{t} E(t)=\int_{\mathbb{R}^{3}} u(t, x)^{3} \partial_{t} u(t, x) \mathrm{d} x, \quad \text { and that } \quad \partial_{t} E(t) \leq\left\|\partial_{t} u(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \cdot\|u(t)\|_{L^{6}\left(\mathbb{R}^{3}\right)}^{3} .
$$

(b) Prove that there exists a universal constant C independent of u such that

$$
\partial_{t} E(t) \leq C E(t)^{2} .
$$

