- 1. Let X_1, \ldots, X_n be an i.i.d. sample from $N(\theta, \theta)$ distribution, where $\theta > 0$.
 - (a) Find a non-constant pivotal quantity (that is, a function of X_1, \ldots, X_n and θ whose distribution does not depend on θ). *Hint:* See if you can make $\sum_{i=1}^{n} X_i$ into a pivot via simple transformations involving θ .
 - (b) Use the pivotal quantity from part (a) to construct a confidence interval for θ .
- 2. For nonnegative integers θ , n, N with $n \leq N$ and $\theta \leq N$, the hypergeometric distribution Hyper (θ, n, N) has p.d.f.

$$f_{\theta}(x) = P_{\theta}(X = x) = \binom{\theta}{x} \binom{N - \theta}{n - x} / \binom{N}{n}$$
(1)

for nonnegative integers x and values of the parameters such that the above quotient in (1) is defined, with $f_{\theta}(x) = 0$ otherwise. Recall that this is the distribution of the number of white balls in a simple random sample without replacement of size n from an urn containing θ white balls and $N - \theta$ black balls. Throughout this problem we shall treat n (i.e., the sample size) and N (i.e., the population size) as fixed and known, and θ as an unknown parameter.

- (a) If $X \sim \text{Hyper}(\theta, n, N)$, show that this family of distributions has the monotone likelihood ratio property in X.
- (b) Given $\alpha \in (0, 1)$, give the form of an exactly level- α UMP test of $H_0: \theta = N$ vs. $H_1: \theta < N$ in as simple a form as possible, involving X. Your test may need to involve randomization to achieve the exact level α . Justify that the test is UMP. *Hint:* For this you only need to consider $f_N(x)$, which takes a particularly simple form.
- (c) Suppose that among the urn's N balls, only 1 is black. Given $\alpha, \beta \in (0, 1)$, find an expression for the smallest sample size n guaranteeing that your level- α UMP test will reject H_0 with probability at least 1β .