1. Let X_{1}, \ldots, X_{n} be independent with distribution $\mathcal{U}[\theta-1, \theta]$, the uniform distribution on the interval $[\theta-1, \theta]$, for some unknown $\theta \in \mathbb{R}$. Let $X_{(1)}<X_{(2)}<\ldots<X_{(n)}$ denote the order statistics.
(a) Find, with explanation, an unbiased estimator $\widehat{\theta}$, which is a function only of $X_{(1)}$.
(b) By finding, and proving the superiority (in mean square error) of another unbiased estimator $\widetilde{\theta}$ that dominates $\hat{\theta}$ in (a), show that $\widehat{\theta}$ is not UMVU. (Hint: To avoid some cumbersome computation, you may use the fact that $X_{(1)}$ and $X_{(n)}$ are not linearly dependent, without proving it.)
(c) Consider the following statement: Since $\widehat{\theta}$ is not UMVU, $X_{(1)}$ must either be not complete or not sufficient.
i. From what theorem does the statement follow?
ii. Give a direct proof that $X_{(1)}$ fails to be (your choice) either complete or sufficient.
2. (a) Let $\left\{\mathcal{P}_{\theta}, \theta \in \Theta\right\}$ be a family of probability distributions, and $X \sim \mathcal{P}_{\theta}$ for some $\theta \in \Theta$. Prove that if $T(X), T^{\prime}(X)$ are both uniformly minimum-variance unbiased estimators (UMVUEs) of θ, then $T=T^{\prime}, \mathcal{P}_{\theta}$-almost surely for every $\theta \in \Theta$.
Hint: Letting $v=\operatorname{Var}(T)=\operatorname{Var}\left(T^{\prime}\right)$ denote the minimal variance and $\bar{T}=\left(T+T^{\prime}\right) / 2$, compare $\operatorname{Var}(\bar{T})$ to v and use the Cauchy-Schwarz inequality $\operatorname{Cov}\left(T, T^{\prime}\right) \leq\left[\operatorname{Var}(T) \operatorname{Var}\left(T^{\prime}\right)\right]^{1 / 2}$ to show that $\operatorname{Cov}\left(T, T^{\prime}\right)=v$. Use this to show that $\operatorname{Var}\left(T-T^{\prime}\right)=0$.
(b) Let two independent sequences X_{1}, \ldots, X_{m} i.i.d. $N\left(\mu, \gamma \sigma^{2}\right)$ and Y_{1}, \ldots, Y_{n} i.i.d. $N\left(\mu, \sigma^{2}\right)$ be observed. Here, the X_{i} are independent of the $Y_{j}, \gamma>0$ is known, and μ and $\sigma^{2}>0$ are unknown. Find the UMVUE of μ, and prove that it is UMVUE.
(c) Let two independent sequences X_{1}, \ldots, X_{m} be i.i.d. $N\left(\mu, \sigma_{x}^{2}\right)$ and Y_{1}, \ldots, Y_{n} i.i.d. $N\left(\mu, \sigma_{y}^{2}\right)$ be observed. Here, the X_{i} are independent of the Y_{j}, μ is unknown, and $\sigma_{x}^{2}>0$ and $\sigma_{y}^{2}>0$ are unknown and not assumed to be equal. Show that the UMVUE of μ does not exist.
Hint: Let $\gamma=\sigma_{x}^{2} / \sigma_{y}^{2}$ and apply part (b) to say what the UMVUE is. Then reverse the roles of the X 's and Y 's, repeat, and finally apply part (a) for a contradiction.
