- 1. Let X_1, \ldots, X_n be independent with distribution $\mathcal{U}[\theta 1, \theta]$, the uniform distribution on the interval $[\theta 1, \theta]$, for some unknown $\theta \in \mathbb{R}$. Let $X_{(1)} < X_{(2)} < \ldots < X_{(n)}$ denote the order statistics.
 - (a) Find, with explanation, an unbiased estimator $\hat{\theta}$, which is a function only of $X_{(1)}$.
 - (b) By finding, and proving the superiority (in mean square error) of another unbiased estimator $\tilde{\theta}$ that dominates $\hat{\theta}$ in (a), show that $\hat{\theta}$ is not UMVU. (Hint: To avoid some cumbersome computation, you may use the fact that $X_{(1)}$ and $X_{(n)}$ are not linearly dependent, without proving it.)
 - (c) Consider the following statement: Since $\hat{\theta}$ is not UMVU, $X_{(1)}$ must either be not complete or not sufficient.
 - i. From what theorem does the statement follow?
 - ii. Give a direct proof that $X_{(1)}$ fails to be (your choice) either complete or sufficient.
- 2. (a) Let $\{\mathcal{P}_{\theta}, \theta \in \Theta\}$ be a family of probability distributions, and $X \sim \mathcal{P}_{\theta}$ for some $\theta \in \Theta$. Prove that if T(X), T'(X) are both uniformly minimum-variance unbiased estimators (UMVUEs) of θ , then $T = T', \mathcal{P}_{\theta}$ -almost surely for every $\theta \in \Theta$. *Hint:* Letting $v = \operatorname{Var}(T) = \operatorname{Var}(T')$ denote the minimal variance and $\overline{T} = (T + T')/2$,

compare $\operatorname{Var}(\overline{T})$ to v and use the Cauchy-Schwarz inequality $\operatorname{Cov}(T, T') \leq [\operatorname{Var}(T)\operatorname{Var}(T')]^{1/2}$ to show that $\operatorname{Cov}(T, T') = v$. Use this to show that $\operatorname{Var}(T - T') = 0$.

- (b) Let two independent sequences X_1, \ldots, X_m i.i.d. $N(\mu, \gamma \sigma^2)$ and Y_1, \ldots, Y_n i.i.d. $N(\mu, \sigma^2)$ be observed. Here, the X_i are independent of the Y_j , $\gamma > 0$ is known, and μ and $\sigma^2 > 0$ are unknown. Find the UMVUE of μ , and prove that it is UMVUE.
- (c) Let two independent sequences X_1, \ldots, X_m be i.i.d. $N(\mu, \sigma_x^2)$ and Y_1, \ldots, Y_n i.i.d. $N(\mu, \sigma_y^2)$ be observed. Here, the X_i are independent of the Y_j , μ is unknown, and $\sigma_x^2 > 0$ and $\sigma_y^2 > 0$ are unknown and not assumed to be equal. Show that the UMVUE of μ does not exist. *Hint:* Let $\gamma = \sigma_x^2/\sigma_y^2$ and apply part (b) to say what the UMVUE is. Then reverse the roles of the X's and Y's, repeat, and finally apply part (a) for a contradiction.