Geometry and Topology Graduate Exam

Spring 2019

Solve all 6 problems. Partial credit will be given to partial solutions.
Problem 1. Let $X=S^{2} / \sim$ be the quotient of the sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} ; x^{2}+y^{2}+z^{2}=1\right\}
$$

by the equivalence relation \sim that glues together the three points $(1,0,0),(0,1,0)$ and $(0,0,1)$; namely, one equivalence class of \sim is equal to $\{(1,0,0),(0,1,0),(0,0,1)\}$, and all other equivalence classes consist of single points. Compute the fundamental group $\pi_{1}\left(X ; x_{0}\right)$ for your preferred choice of base point $x_{0} \in X$.

Problem 2.

Recall that the wedge sum $Y \vee Z$ of two spaces Y and Z, each equipped with a base point y_{0} and z_{0}, is obtained from the disjoint union $Y \coprod Z$ by gluing $x_{0} \in X$ to $y_{0} \in Y$. Let $X=S^{1} \vee S^{2}$ be the wedge sum of the circle S^{1} and the sphere S^{2} (for arbitrary choices of base points).
a. Draw a picture of the universal cover \tilde{X} of X.
b. Compute the homology group $H_{2}(\widetilde{X} ; \mathbb{Z})$, with integer coefficients.

Problem 3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by $f(z)=2 z^{3}+3 z^{2}$. Note that $f^{-1}(\{0,1\})=$ $\left\{-\frac{3}{2},-1,0, \frac{1}{2}\right\}$ (no need to check this).
a. Show that the restriction $g: \mathbb{C}-\left\{-\frac{3}{2},-1,0, \frac{1}{2}\right\} \rightarrow \mathbb{C}-\{0,1\}$ of f is a covering map. Hint: first show that g is a local diffeomorphism.
b. What is the index of the subgroup $g_{*}\left(\pi_{1}\left(\mathbb{C}-\left\{-\frac{3}{2},-1,0, \frac{1}{2}\right\} ; 1\right)\right)$ in the fundamental group $\pi_{1}(\mathbb{C}-\{0,1\} ; 5)$?

Problem 4.

Let M be a smooth m-dimensional submanifold of \mathbb{R}^{n}, and let

$$
S_{r}^{n-1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} ; \sum_{i=1}^{n} x_{i}^{2}=r^{2}\right\}
$$

denote the sphere of radius r centered at the origin in \mathbb{R}^{n}. Show that, for every $\varepsilon>0$, there exists an r in the interval $[1-\varepsilon, 1+\varepsilon]$ such that the intersection $M \cap S_{r}$ is a submanifold of M of dimension $m-1$. Possible hint: consider the map $f: M \rightarrow \mathbb{R}$ defined by $f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}$.

Problem 5.

Let $M=\left\{(x, y, z, w) \in \mathbb{R}^{4} ; x^{2}+y^{2}+z^{2}-w^{4}=-1\right\}$.
a. Prove that M is a differentiable submanifold of \mathbb{R}^{4}.
b. Let f be the map $\mathbb{R}^{4} \rightarrow \mathbb{R}$ sending $(x, y, z, w) \mapsto w$. Compute the critical values of the restriction $f_{\mid M}: M \rightarrow \mathbb{R}$. Possible hint: the tangent map $T_{p} f_{\mid M}$ of the restriction $f_{\mid M}$ at $p \in M$ is the restriction of $T_{p} f$ to $T_{p} M=\operatorname{ker} T_{p} g$ where $g: \mathbb{R}^{4} \rightarrow \mathbb{R}$ is defined by $g(x, y, z, w)=x^{2}+y^{2}+z^{2}-w^{4}$.

Problem 6. Let Z be the vector field on \mathbb{R}^{2} defined by $Z(x, y)=-y \frac{\partial}{\partial y}+2 x \frac{\partial}{\partial x}$. Compute the Lie derivative $\mathcal{L}_{X}(d x \wedge d y)$.

