Algebra Qualifying Exam - Spring 2019

- 1. Classify all groups of order 495.
- 2. If $f(x) \in \mathbb{Q}[x]$ is irreducible, and has precisely 2 non-real complex roots, then if E is the splitting field of f over \mathbb{Q} , show that $Gal(E/\mathbb{Q})$ is isomorphic to S_5 .
- 3. If R is a ring and M is a Noetherian (left) R-module, then prove any surjective R-module homomorphim $\varphi: M \to M$ is an isomorphism.
- 4. If R is an Artinian ring with no non-zero nilpotent elements, then show that R is a direct sum of division rings.
- 5. Let $R \subset S$ be an extension of commutative rings such that S R is closed under multiplication. Prove that R is integrally closed in S.
- 6. In the ring $\mathbb{C}[x, y, \frac{1}{y}]$, show that some power of $x^9 3y^3 + 4$ belongs to the ideal $(x^2 y, 2x^2 xy^2)$.