Numerical Analysis Prelim Spring 2019

January 11, 2019

Problem 1.

Let $\left\{\varphi_{i}\right\}_{i=1}^{m}$ be m linearly independent vectors in \mathbb{R}^{n} and set $\Phi=\left[\varphi_{1}\left|\varphi_{2}\right| \ldots \mid \varphi_{m}\right] \in \mathbb{R}^{n \times m}$.
(a) Prove that $\Phi^{T} \Phi$ is nonsingular
(b) Let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^{n}, for $x \in \mathbb{R}^{n}$ define the map $P_{\Phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $P_{\Phi} x=\varphi$, where $\varphi=\arg \min _{\psi \in \operatorname{span}\left\{\varphi_{i}\right\}_{i=1}^{m}}\|x-\psi\|$, and show that $P_{\Phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is linear.
(c) A linear transformation P on a Hilbert space is said to be an orthogonal projection if 1) P is self adjoint (i.e. $P^{*}=P$) and 2) P is idempotent (i.e. $P^{2}=P$). Show that $P_{\Phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is an orthogonal projection.
(d) Find a set of vectors in \mathbb{R}^{n} whose span is equal to the orthogonal complement of the subspace spanned by the $\left\{\varphi_{i}\right\}_{i=1}^{m}$.

Problem 2. For a given small value $\epsilon>0$ consider a matrix A of the form

$$
A=\left(\begin{array}{cc}
1 & 1 \\
-\epsilon & \epsilon
\end{array}\right) .
$$

a. Find the matrix operator norm $\|A\|_{2}$ induced by the Euclidean norm in \mathbb{R}^{2}. (Hint: $\|A\|_{2}=$ $\left\|A x^{*}\right\|_{2}$ where $\left\|x^{*}\right\|_{2}=1$ and $\left\|A x^{*}\right\|_{2}^{2} \geq\|A x\|_{2}^{2}$ for all $x \in \mathbb{R}^{2}$ with $\|x\|_{2}=1$.)
b. Find the matrix norm $\left\|A^{-1}\right\|_{2}$.
c. What is the smallest possible norm $\|\delta A\|_{2}$ for a matrix δA such that the matrix $A+\delta A$ is singular?
d. Find a matrix δA with the smallest possible norm $\|\delta A\|$ such that $A+\delta A$ is singular.

Problem 3. Consider a strictly diagonally dominant matrix $A=D-E-F$ where matrices D, E, F are diagonal, strictly lower-triangular, strictly upper-triangular matrices, respectively.
a. For any parameter $0<\omega<1$ and complex value λ with $|\lambda| \geq 1$, show that the matrix

$$
A_{\lambda, \omega}=\omega^{-1}(1-\omega-\lambda) D+F+\lambda E
$$

has the same properties as matrix A; that is, that $A_{\lambda, \omega}$ is also a strictly diagonally dominant matrix. (Hint: Use the fact that $|1-\omega-\lambda| \geq|\lambda|-(1-\omega)$ to show that $\left.\left|\omega^{-1}(1-\omega-\lambda)\right| \geq|\lambda|\right)$
b. Recall that the iteration matrix $B_{S O R}$ for the Successive Over Relaxation (SOR) method is given by

$$
B_{S O R}=\left(\omega^{-1} D-E\right)^{-1}\left(\left(\omega^{-1}-1\right) D+F\right) .
$$

Show that the matrix $B_{S O R}-\lambda I$ is nonsingular for all $|\lambda| \geq 1$ and $0<\omega<1$.
c. Using the conclusion of part b above, what can be deduced about the convergence of the SOR method applied to a strictly diagonally dominant matrix A with $0<\omega<1$. Justify your answer.

Problem 4.

Consider the matrix

$$
A=\left[\begin{array}{cccc}
-2 & 10 & 100 & 200 \\
0.01 & 5 & 100 & 1000 \\
.001 & .02 & 15 & 10 \\
0 & 0 & .01 & 9
\end{array}\right]
$$

(a) Notice that A is close to upper triangular. From this observation alone, what do you expect to be true about its eigenvalues?
(b) Use Gerschgorin's theorem to locate the eigenvalues of A to within a region of the complex plane that is the union of four discs. Notice, the theorem does not do a very good job at locating the eigenvalues.
(c) Suppose T is invertible. Prove that the eigenvalues of $T^{-1} A T$ are the same as the eigenvalues of A.
(d) Find a diagonal matrix T such that when Gerschgorin's theorem is applied to $T^{-1} A T$, one obtains four disjoint disks in the complex plane, each of which contains an eigenvalue of A.

