PARTIAL DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2018

Partial credit will be awarded, but in the event that you can not fully solve a problem you should state clearly what it is you have done and what you have left out. Start each problem on a fresh sheet of paper and write on only one side of the paper.

1. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded with normal vector field ν and let $u_{0} \in C_{b}(\Omega)$ with $u_{0} \geq 0$ be non-trivial. Show that the problem

$$
\begin{aligned}
\partial_{t} u-\Delta u & =u^{2} \text { in } \Omega \times(0, T), \\
\partial_{\nu} u & =0 \text { on } \partial \Omega \times(0, T), \\
u(x, 0) & =u_{0}(x) \text { for } x \in \Omega,
\end{aligned}
$$

exists for at most a finite time T.
Hint: Show that the mean $m(t)=\frac{1}{|\Omega|} \int_{\Omega} u(t, x) d x$ satisfies $\partial_{t} m(t) \geq m(t)^{2}$.
2. Let $\Omega \subset \mathbb{R}^{n}$ be open, connected and bounded and let $R>0$ such that $\Omega \subset B_{R}(0)$.
(a) Let $v \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ with $\Delta v=0$ in Ω. Show that

$$
\max _{x \in \bar{\Omega}} v(x)=\max _{x \in \partial \Omega} v(x)
$$

(b) Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be a solution of

$$
\begin{aligned}
-\Delta u & =1 \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

Show that

$$
0 \leq u(x) \leq \frac{R^{2}-|x|^{2}}{2 n}
$$

for all $x \in \bar{\Omega}$.
3. Let u be a classical solution of the following initial boundary value problem:

$$
\begin{aligned}
& u_{t}=u_{x x}, \quad \text { in }(a, b) \times(0, T) \\
& u(a, t)=u(b, t)=0 \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

where u_{0} is a continuous function.
(a) Show that the solutions are unique.
(b) Show that there exists a constant $\alpha>0$ such that

$$
\|u(\cdot, t)\|_{L^{2}}^{2} \leq e^{-\alpha t}\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

