1. Let $M\left(n ; p_{1}, \ldots, p_{k}\right)$ denote the multinomial distribution with n trials and cell probabilities p_{1}, \ldots, p_{k}. Now let $X=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ have multinomial distribution

$$
M(200 ; 1 / 2+\theta / 2,1 / 4-\theta / 4,1 / 4-\theta / 3, \theta / 12)
$$

for some $\theta \in(0,3 / 4)$. Write down the E-step and M-step of the Expectation Maximization algorithm for estimating θ by assuming that there is actually data $\left(x_{11}, x_{12}, x_{21}, x_{22}, x_{3}, x_{4}\right)$ from 6 cells rather than 4 , but that the first 4 cells are unobserved but $x_{1}=x_{11}+x_{12}$ and $x_{2}=x_{21}+x_{22}$ are observed. Hint: Choose convenient cell probabilities for the unobserved cells in the complete model.
2. Recall that the bivariate normal distribution with mean $\left(\mu_{1}, \mu_{2}\right)^{T}$, variances $\sigma_{1}^{2}, \sigma_{2}^{2}$, and correlation coefficient ρ has density

$$
\begin{equation*}
f\left(y_{1}, y_{2}\right) \propto \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left\{\left(\frac{y_{1}-\mu_{1}}{\sigma_{1}}\right)^{2}+\left(\frac{y_{2}-\mu_{2}}{\sigma_{2}}\right)^{2}-\frac{2 \rho\left(y_{1}-\mu_{1}\right)\left(y_{2}-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}\right\}\right] \tag{1}
\end{equation*}
$$

for $y_{1}, y_{2} \in(-\infty, \infty)$.
Now let θ be a random variable with (univariate) normal distribution $N\left(\mu, \tau^{2}\right)$ and, given θ, let X_{1}, \ldots, X_{n} be i.i.d. with (univariate) normal distribution $N\left(\theta, \sigma^{2}\right)$. Let $\bar{X}=(1 / n) \sum_{i=1}^{n} X_{i}$ denote the sample mean. For this problem assume that θ is unobserved, the X_{i} are observed, τ and σ are known values, and μ is an unknown parameter.
(a) Find the joint distribution of θ and \bar{X}. Give the name of the distribution and the values of any parameters in terms of quantities defined above. Hint: It may help to use the change of variables $\widetilde{\theta}=\theta-\mu$ and $\widetilde{X}=\bar{X}-\mu$.
(b) Using your answer from part (2a), find the marginal distribution of \bar{X}. Give the name of the distribution and the values of any parameters in terms of quantities defined above.
(c) Using your answer from part (2b), for arbitrary $\alpha \in(0,1)$ write down an exact ($1-\alpha$) confidence interval for μ in terms of observed random variables and known quantities. Compare its width with the standard interval for θ and comment.

