- 1. Let U_1, \ldots, U_n be iid with the uniform distribution $\mathcal{U}[\beta, \beta + 1]$ for $\beta \in \mathbb{R}$ and $n \geq 2$, and let $U_{(1)} < \cdots < U_{(n)}$ be the order statistics of the sample.
 - a. Show that $(U_{(1)}, U_{(n)})$ is sufficient but not complete.
 - b. Show that $\overline{U}_n 1/2$ is not a uniformly minimum variance estimator of β , where \overline{U}_n is the average of U_1, \ldots, U_n .

2. Fix
$$n \geq 2$$
.

(a) Let $y_{(1)} \leq \ldots \leq y_{(n)}$ be some ordered real numbers and define

$$x_k = \sum_{i>k} y_{(i)} - (n-k)y_{(k)} \quad \text{for} \quad k = 1, \dots, n,$$
(1)

where an empty sum denotes 0 by convention. Show that x_k is a non-increasing sequence and $x_n = 0$.

(b) Let Y_1, \ldots, Y_n be independent with $Y_i \sim N(\theta_i, \sigma^2)$ for unknown $\sigma^2 > 0$ and $\boldsymbol{\theta} = (\theta_1, \ldots, \theta_n)$ in the (n-1)-simplex

$$\theta_1 + \ldots + \theta_n = 1$$
 and $\theta_i \ge 0$ for all *i*. (2)

Based on the data $Y_1 = y_1, \ldots, Y_n = y_n$:

i. find the MLE $\hat{\theta}$ of θ , subject to the constraints (2), by minimizing

$$\frac{1}{2}\sum_{i}(y_i - \theta_i)^2 + \lambda\left(\sum_{i}\theta_i - 1\right)$$
(3)

over $\theta_i \ge 0$ and λ (Hint: Use part 2a, and consider the smallest $k \in \{1, \ldots, n\}$ such that $x_k < 1$, and $\lambda \in [y_{(k-1)}, y_{(k)})$.)

ii. find the MLE of σ^2 . You can state your answer in terms of $\hat{\theta}$ even if you don't solve part 2(b)i.