Geometry and Topology Graduate Exam Spring 2018

Solve all 7 problems. Partial credit will be given to partial solutions.

Problem 1.

a) Define $F: \mathbb{R}^4 \to \mathbb{R}^2$ by

$$F(x_1, x_2, x_3, x_4) = (x_1^2 + x_2^2 + x_3^2 + x_4^2, x_1^2 + x_2^2 - x_3^2 - x_4^2).$$

Show that $M = F^{-1}(1,0)$ is a smooth manifold.

- b) For each $x = (x_1, x_2, x_3, x_4) \in M$ show that the tangent space $T_x M$ is spanned by $(x_2, -x_1, 0, 0)$ and $(0, 0, x_4, -x_3)$.
- c) Let $G: \mathbb{R}^4 \to \mathbb{R}$ be a smooth map and $g = G \mid_M$ be the restriction of G to M. Show that x is a critical point of g if and only if ker $dF_x \subset \ker dG_x$.
- d) If $G(x_1, x_2, x_3, x_4) = x_1 + x_3$ find the critical points of g.

Problem 2.Let X be a topological space. Let SX denote the suspansion of X, i.e. the space obtained from $X \times [0, 1]$ by collapsing $X \times \{0\}$ to a point and $X \times \{1\}$ to another point:

$$SX := X \times [0,1] / \sim$$
, where $\{(x,t) \sim (y,s) \text{ if } s = t = 0 \text{ or } s = t = 1 \text{ or } (x,t) = (y,s) \}$
Determine the relationship between the homology of SX and X .

Problem 3.Consider \mathbb{R}^3 with the coordinates (x, y, z). Write down explicit formulas for the vector fields X and Y which represent the infinitesimal generators of rotation about the x and y axes respectively and compute their Lie bracket.

Problem 4.

Draw a based covering space of the figure eight with each of the following subgroups of $\mathbb{Z} * \mathbb{Z} = \langle a, b \rangle$ as its fundamental group. In each case determine whether or not the subgroup is normal.

(1)
$$\langle a^3, b, aba^{-1}, a^{-1}ba \rangle$$

(2)
$$\langle a^2, b^2, aba, bab \rangle$$

Problem 5.

- a) Prove there does not exist a degree 1 map $S^2 \to T^2$.
- b) Let $f: M^p \to N^p$ be any smooth map between two connected compact orientable manifolds of the same dimension p. Suppose there exists a regular value $y \in N$ with three pre-images $f^{-1}(y) = \{x_1, x_2, x_3\}$. Prove that f is necessarily surjective.

Problem 6.

Let $T = S^1 \times S^1$ and let $x, y \in T$ be two distinct points. Let Y be the quotient space obtained from $T \times \{1, 2\}$ by identifying the points (x, 1) and (x, 2) into a single point \bar{x} , and identifying the points (y, 1) and (y, 2) into a single point \bar{y} , distinct from \bar{x} . Compute $\pi_1(Y, \bar{x})$.

ADDITIONAL PROBLEM ON NEXT PAGE

Problem 7.

a) Compute the integral

$$\int_{S^2} 2xyz dx \wedge dy + (yz + xy^2) dx \wedge dz + xz dy \wedge dz,$$

where S² is oriented as the boundary of the unit ball B³ ⊂ ℝ³.
b) Show that the form

$$\omega = \frac{xdy - ydx}{x^2 + y^2}$$

on $\mathbb{R}^2 - \{(0,0)\}$ is closed but not exact.