Geometry and Topology Graduate Exam

Spring 2018
Solve all 7 problems. Partial credit will be given to partial solutions.

Problem 1.

a) Define $F: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ by

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}, x_{1}^{2}+x_{2}^{2}-x_{3}^{2}-x_{4}^{2}\right) .
$$

Show that $M=F^{-1}(1,0)$ is a smooth manifold.
b) For each $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in M$ show that the tangent space $T_{x} M$ is spanned by $\left(x_{2},-x_{1}, 0,0\right)$ and $\left(0,0, x_{4},-x_{3}\right)$.
c) Let $G: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be a smooth map and $g=\left.G\right|_{M}$ be the restriction of G to M. Show that x is a critical point of g if and only if ker $d F_{x} \subset \operatorname{ker} d G_{x}$.
d) If $G\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}+x_{3}$ find the critical points of g.

Problem 2.Let X be a topological space. Let $S X$ denote the suspsension of X, i.e. the space obtained from $X \times[0,1]$ by collapsing $X \times\{0\}$ to a point and $X \times\{1\}$ to another point:
$S X:=X \times[0,1] / \sim$, where $\{(x, t) \sim(y, s)$ if $s=t=0$ or $s=t=1$ or $(x, t)=(y, s)\}$
Determine the relationship between the homology of $S X$ and X.
Problem 3.Consider \mathbb{R}^{3} with the coordinates (x, y, z). Write down explicit formulas for the vector fields X and Y which represent the infinitesimal generators of rotation about the x and y axes respectively and compute their Lie bracket.

Problem 4.

Draw a based covering space of the figure eight with each of the following subgroups of $\mathbb{Z} * \mathbb{Z}=\langle a, b\rangle$ as its fundamental group. In each case determine whether or not the subgroup is normal.
(1) $\left\langle a^{3}, b, a b a^{-1}, a^{-1} b a\right\rangle$
(2) $\left\langle a^{2}, b^{2}, a b a, b a b\right\rangle$

Problem 5.

a) Prove there does not exist a degree $1 \operatorname{map} S^{2} \rightarrow T^{2}$.
b) Let $f: M^{p} \rightarrow N^{p}$ be any smooth map between two connected compact orientable manifolds of the same dimension p. Suppose there exists a regular value $y \in N$ with three pre-images $f^{-1}(y)=\left\{x_{1}, x_{2}, x_{3}\right\}$. Prove that f is necessarily surjective.

Problem 6.

Let $T=S^{1} \times S^{1}$ and let $x, y \in T$ be two distinct points. Let Y be the quotient space obtained from $T \times\{1,2\}$ by identifying the points $(x, 1)$ and $(x, 2)$ into a single point \bar{x}, and identifying the points $(y, 1)$ and $(y, 2)$ into a single point \bar{y}, distinct from \bar{x}. Compute $\pi_{1}(Y, \bar{x})$.

ADDITIONAL PROBLEM ON NEXT PAGE

Problem 7.

a) Compute the integral

$$
\int_{S^{2}} 2 x y z d x \wedge d y+\left(y z+x y^{2}\right) d x \wedge d z+x z d y \wedge d z
$$

where S^{2} is oriented as the boundary of the unit ball $B^{3} \subset \mathbb{R}^{3}$.
b) Show that the form

$$
\omega=\frac{x d y-y d x}{x^{2}+y^{2}}
$$

on $\mathbb{R}^{2}-\{(0,0)\}$ is closed but not exact.

