Numerical Analysis Screening Exam, Spring 2018

This exam has 4 problems. Please write down your names on all pages of your answer and mark clearly the order of pages. Start a new problem on a new page.

I. Direct Methods

Consider the matrix

$$A = \begin{bmatrix} R & \mid & v \\ u^T & \mid & 0 \end{bmatrix}$$

where R is an $n \times n$ invertible upper triangular matrix and u and v are vectors in \mathbb{R}^n .

- (a) Consider the LU decomposition of A, A = LU, where L is unit lower triangular and U is upper triangular. Find the matrices L and U.
- (b) Find necessary and sufficient conditions on R, u and v for A to be non-singular.
- (c) Suppose A is non-singular. Use the LU-decomposition from (a) to formulate an economical algorithm for solving the system of equations Ax = b and determine its computational cost.

II. Iterative Methods

Consider the system of equations Ax = b where

$$A = D - E - F$$

is an $n \times n$ Hermitian positive definite matrix, D is diagonal, -E is strictly lower triangular and -F is strictly upper triangular. (In other words, both E and F have zeros on the diagonal.) To solve the system using the Gauss-Seidel method with successive over-relaxation (SOR) we write A = M - N where

$$M = \frac{1}{\omega}D - E$$

and
$$N = \left(\frac{1}{\omega} - 1\right)D + F$$

where ω is a real number. The iteration matrix is

$$T_{\omega} = M^{-1}N = (D - \omega E)^{-1} \left[(1 - \omega)D + \omega F \right].$$

- (a) For any matrix B let B^* be its conjugate transpose. Show that if $|\omega 1| < 1$ then $M^* + N$ is positive definite.
- (b) Consider the vector norm $|| \cdot ||_A$ be defined by

$$||x||_A = \sqrt{x^* A x}.$$

and the corresponding matrix norm $|| \cdot ||_A$ it induces on $\mathbb{C}^{n \times n}$. Show that if $M^* + N$ is positive definite then $||M^{-1}N||_A < 1$.

- (c) What can you deduce about the convergence of the SOR method in the case when $|\omega 1| < 1$?
- (d) Suppose the SOR method converges for all initial vectors x_0 . Show that $|\omega 1| < 1$. (*Hint: compute* det (T_{ω}) .)

III. Eigenvalues Problem

Suppose A is a real symmetric $n \times n$ matrix. Given two integers p and q between 1 and n, let

be a Givens matrix. In other words, G is the $n \times n$ matrix defined by

$$\begin{array}{ll} G_{kk} = 1 & k \neq p, q & G_{ij} = 0 \quad i \neq j \text{ and } (i,j) \neq (p,q) \text{ or } (q,p) \\ G_{pp} = c & G_{pq} = s \\ G_{qq} = c & G_{qp} = -s \end{array}$$

where $c = \cos \theta$ and $s = \sin \theta$.

(a) Let $A_1 = G^T A G$ and suppose θ is chosen so that $[A_1]_{pq} = 0$. Let $|| \cdot ||$ be the Frobenius norm given by

$$||M|| = \sum_{i,j} M_{ij}^2.$$

Let $A = D_0 + E_0$ and $A_1 = D_1 + E_1$ where D_0 and D_1 are diagonal matrices and E_0 and E_1 have zeros on their diagonals. Show that

$$||E_1||^2 = ||E_0||^2 - 2A_{pq}^2$$

(b) Use part (a) to describe an iterative method for finding the eigenvalues of A and prove your algorithm converges.

IV. Least Square Problem

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and let $A = U\Sigma V^T$ be its singular value decomposition. We want to find k vectors $x_i \in \mathbb{R}^m$ and $y_i \in \mathbb{R}^n$ such that

$$\left\|A - \sum_{i=1}^{k} x_i y_i^T\right\|_F^2$$

is minimal, where $||A||_F^2 := \sum_{i=1}^m \sum_{j=1}^n a_{ij}^2$ is the Frobenius norm.

(a) Let u_i and v_j the *i*-th and *j*-th column of U and V respectively and σ_r the *r*-th singular value of A. Show that

$$x_i = \sqrt{\sigma_i} u_i, \qquad \qquad y_i = \sqrt{\sigma_i} v_i$$

is a solution of the optimization problem .

Hint: For any orthogonal matrix O and S we have $||OAS||_F = ||A||_F$.

- (b) Assume that m = n is large and k small. How many values do you have to store for A and how many for its approximation ∑^k_{i=1} x_iy^T_i?
 (c) Suppose that the matrix A represents a database of rankings of n movies by
- (c) Suppose that the matrix A represents a database of rankings of n movies by m movie viewers such that $a_{ij} \in \{0, \ldots, 5\}$ is the star ranking of movie j by viewer i. Is it reasonable that A can be well approximated by some $\sum_{i=1}^{k} x_i y_i^T$ for some comparatively small k?

Hint: Discuss the case that there are k groups of users with similar interests and therefore similar movie rankings.