Numerical Analysis Screening Exam, Spring 2018

This exam has 4 problems. Please write down your names on all pages of your answer and mark clearly the order of pages. Start a new problem on a new page.

I. Direct Methods

Consider the matrix

$$
A=\left[\begin{array}{c|c}
R & v \\
u^{T} & \mid
\end{array}\right]
$$

where R is an $n \times n$ invertible upper triangular matrix and u and v are vectors in \mathbb{R}^{n}.
(a) Consider the LU decomposition of $A, A=L U$, where L is unit lower triangular and U is upper triangular. Find the matrices L and U.
(b) Find necessary and sufficient conditions on R, u and v for A to be non-singular.
(c) Suppose A is non-singular. Use the LU-decomposition from (a) to formulate an economical algorithm for solving the system of equations $A x=b$ and determine its computational cost.

II. Iterative Methods

Consider the system of equations $A x=b$ where

$$
A=D-E-F
$$

is an $n \times n$ Hermitian positive definite matrix, D is diagonal, $-E$ is strictly lower triangular and $-F$ is strictly upper triangular. (In other words, both E and F have zeros on the diagonal.) To solve the system using the Gauss-Seidel method with successive over-relaxation (SOR) we write $A=M-N$ where

$$
\begin{aligned}
M & =\frac{1}{\omega} D-E \\
\text { and } \quad N & =\left(\frac{1}{\omega}-1\right) D+F
\end{aligned}
$$

where ω is a real number. The iteration matrix is

$$
T_{\omega}=M^{-1} N=(D-\omega E)^{-1}[(1-\omega) D+\omega F] .
$$

(a) For any matrix B let B^{*} be its conjugate transpose. Show that if $|\omega-1|<1$ then $M^{*}+N$ is positive definite.
(b) Consider the vector norm $\|\cdot\|_{A}$ be defined by

$$
\|x\|_{A}=\sqrt{x^{*} A x}
$$

and the corresponding matrix norm $\|\cdot\|_{A}$ it induces on $\mathbb{C}^{n \times n}$. Show that if $M^{*}+N$ is positive definite then $\left\|M^{-1} N\right\|_{A}<1$.
(c) What can you deduce about the convergence of the SOR method in the case when $|\omega-1|<1$?
(d) Suppose the SOR method converges for all initial vectors x_{0}. Show that $|\omega-1|<1$. (Hint: compute $\operatorname{det}\left(T_{\omega}\right)$.)

III. Eigenvalues Problem

Suppose A is a real symmetric $n \times n$ matrix. Given two integers p and q between 1 and n, let

$$
G=G(p, q, \theta)=\left[\begin{array}{ccccccccc}
1 & & & & & & & \\
& 1 & & & & & & & \\
& & \ddots & & & & & & \\
& & & c & \ldots & s & & & \\
& & & \vdots & \ddots & \vdots & & & \\
& & & -s & \ldots & c & & & \\
& & & & & & \ddots & & \\
& & & & & & & 1 & \\
& & & & & & & & 1
\end{array}\right]
$$

be a Givens matrix. In other words, G is the $n \times n$ matrix defined by

$$
\begin{array}{ll}
G_{k k}=1 \quad k \neq p, q & G_{i j}=0 \quad i \neq j \text { and }(i, j) \neq(p, q) \text { or }(q, p) \\
G_{p p}=c & G_{p q}=s \\
G_{q q}=c & G_{q p}=-s
\end{array}
$$

where $c=\cos \theta$ and $s=\sin \theta$.
(a) Let $A_{1}=G^{T} A G$ and suppose θ is chosen so that $\left[A_{1}\right]_{p q}=0$. Let $\|\cdot\|$ be the Frobenius norm given by

$$
\|M\|=\sum_{i, j} M_{i j}^{2}
$$

Let $A=D_{0}+E_{0}$ and $A_{1}=D_{1}+E_{1}$ where D_{0} and D_{1} are diagonal matrices and E_{0} and E_{1} have zeros on their diagonals. Show that

$$
\left\|E_{1}\right\|^{2}=\left\|E_{0}\right\|^{2}-2 A_{p q}^{2}
$$

(b) Use part (a) to describe an iterative method for finding the eigenvalues of A and prove your algorithm converges.

IV. Least Square Problem

Let $A \in \mathbb{R}^{m \times n}$ be a matrix and let $A=U \Sigma V^{T}$ be its singular value decomposition. We want to find k vectors $x_{i} \in \mathbb{R}^{m}$ and $y_{i} \in \mathbb{R}^{n}$ such that

$$
\left\|A-\sum_{i=1}^{k} x_{i} y_{i}^{T}\right\|_{F}^{2}
$$

is minimal, where $\|A\|_{F}^{2}:=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}$ is the Frobenius norm.
(a) Let u_{i} and v_{j} the i-th and j-th column of U and V respectively and σ_{r} the r-th singular value of A. Show that

$$
x_{i}=\sqrt{\sigma_{i}} u_{i}, \quad y_{i}=\sqrt{\sigma_{i}} v_{i}
$$

is a solution of the optimization problem
Hint: For any orthogonal matrix O and S we have $\|O A S\|_{F}=\|A\|_{F}$.
(b) Assume that $m=n$ is large and k small. How many values do you have to store for A and how many for its approximation $\sum_{i=1}^{k} x_{i} y_{i}^{T}$?
(c) Suppose that the matrix A represents a database of rankings of n movies by m movie viewers such that $a_{i j} \in\{0, \ldots, 5\}$ is the star ranking of movie j by viewer i. Is it reasonable that A can be well approximated by some $\sum_{i=1}^{k} x_{i} y_{i}^{T}$ for some comparatively small k ?

Hint: Discuss the case that there are k groups of users with similar interests and therefore similar movie rankings.

