DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2017

Each problem is worth 10 points. There are seven problems.

1. Consider the $2^{\text {nd }}$ order ODE,

$$
x^{\prime \prime}+p(t) x^{\prime}+a x=0
$$

where $a>0$ and $\int_{0}^{t} p(s) d s \rightarrow \infty$ an $t \rightarrow \infty$. Suppose $\phi(t)$ and $\psi(t)$ form a fundamental set of solutions, i.e.

$$
X(t)=\left(\begin{array}{cc}
\phi(t) & \psi(t) \\
\phi^{\prime}(t) & \psi^{\prime}(t)
\end{array}\right)
$$

is non-singular. Prove $\operatorname{det} X(t) \rightarrow 0$ as $t \rightarrow \infty$.
2. Given the system of ODE's

$$
x^{\prime}=A x+f(t, x),
$$

where A is an $n \times n$ real matrix with spectrum in the open left half of the complex plane. The function f is real, continuous for small $|x|$ and $t \geq 0$ and

$$
f(t, x)=o(|x|), \quad \text { as } \quad|x| \rightarrow 0
$$

uniformly in t, i.e. given $\varepsilon>0$ there is a $\delta>0$ such that

$$
\frac{|f(t, x)|}{|x|} \leq \varepsilon
$$

whenever $0<|x|<\delta$, and $t \in[0, \infty)$. Prove that the zero solution is asymptotically stable.
3. Show that the planar system

$$
\begin{aligned}
x^{\prime} & =x-y-x^{3}-x y^{2} \\
y^{\prime} & =x+y-x^{2} y-y^{3}
\end{aligned}
$$

has a periodic orbit Π in \mathbb{R}^{2} other than the trivial one at $(0,0)$. Is $(0,0)$ necessarily contained in the region surrounded by Π ? Justify your answer.
4. Consider the initial value problem

$$
\begin{array}{ll}
u_{t}+u u_{x}=2, & x \in \mathbb{R}, t>0 \\
u(x, 0)=x, & x \in \mathbb{R}
\end{array}
$$

(a) Find the equation for the characteristics. Are there any shock forming with this initial condition?
(b) Find an explicit formula for the solution of this initial value problem.
5. Let $U \subset \mathbb{R}^{n}$ be open and bounded and let $u \in C^{2}(U) \cap C(\bar{U})$ be harmonic in U. Prove that if U is connected and there exists $x_{0} \in U$ such that $u\left(x_{0}\right)=\max _{\bar{U}} u$, then u is constant within U.
6. Let U be a bounded domain in $\mathbb{R}^{n}(n \geq 2)$ with a smooth boundary and let u be a C^{2}-solution of the following initial boundary value problem

$$
\begin{aligned}
& u_{t}=\Delta u \quad \text { in } U \times(0, \infty), \\
& u=0 \quad \text { on } \partial U \times(0, \infty), \\
& u=u_{0} \quad \text { on } U \times\{t=0\} .
\end{aligned}
$$

Here u_{0} is smooth, bounded and integrable in U. Show that there exists a constant $\alpha>0$ such that

$$
\|u(\cdot, t)\|_{L^{2}(U)} \leq e^{-\alpha t}\left\|u_{0}\right\|_{L^{2}(U)} .
$$

7. We define a weak solution of the one-dimensional wave equation $u_{t t}-u_{x x}=0$ to be a function $u(x, t)$ such that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} u(x, t)\left(\phi_{t t}(x, t)-\phi_{x x}(x, t)\right) d x d t=0
$$

for every $\phi \in C_{c}^{2}\left(\mathbb{R}^{2}\right)$.
(a) Show that any C^{2}-solution of the wave equation is also a weak solution.
(b) Determine if $u(x, t):=H(x-t)$ is a weak solution of the wave equation or not. Here H is the Heaviside function: $H(x)=0$ for $x<0$ and $H(x)=1$ for $x \geq 0$.

