- 1. Let X_1, \ldots, X_n be a random sample from the normal distribution $N(\mu, 1)$. Let $u \in \mathbb{R}$ be a given threshold value, and assume that we want to estimate the probability $p = p(\mu) = P_{\mu}(X_1 \leq u)$.
 - (a) Find an unbiased estimator of p.
 - (b) Letting $\overline{X} = n^{-1} \sum_{i=1}^{n} X_i$ denote the sample mean, show that the joint distribution of \overline{X} and $X_1 \overline{X}$ is bivariate normal and find the parameters of this distribution. Use your answer to demonstrate that \overline{X} and $X_1 \overline{X}$ are independent.
 - (c) Use the estimator from part (1a), along with the Rao-Blackwell theorem and part (1b), to find the uniform minimal variance unbiased estimator (UMVUE) for p.
- 2. For all $k = 0, 1, \ldots$, we have that

$$\int_{-\infty}^{\infty} x^k e^{-x^4/12} dx = 2^{\frac{k-3}{2}} 3^{\frac{k+1}{4}} \left((-1)^k + 1 \right) \Gamma\left(\frac{k+1}{4}\right).$$

(a) Determine c_1 such that

$$p(x) = c_1 e^{-x^4/12} \tag{1}$$

is a density function.

In the following we consider the location model

$$p(x;\theta) = p(x-\theta), \quad \theta \in (-\infty,\infty)$$

where p(x) is as in (1). Assume a sample X_1, \ldots, X_n of independent random variables with distribution $p(x; \theta)$ has been observed.

- (b) Prove that the maximizer of the likehood function is unique and can be found by setting the derivative of the log likelihood to zero.
- (c) Determine the maximum likelihood estimate $\hat{\theta}$ of θ based on the sample in a form as explicit as you can in terms of the sample moments

$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k.$$

(d) Determine the information $I_{\mathbf{X}}(\theta)$ for θ in the sample X_1, \ldots, X_n , and the non-trivial limiting distribution of $\hat{\theta}$, when properly scaled and centered. You may assume regularity conditions hold without explicitly noting them.