Algebra Exam January 2017

Show your work. Be as clear as possible. Do all problems.

1. Let R be a PID. Let M be an R-module.
(a) Show that if M is finitely generated, then M is cyclic if and only if $M / P M$ is for all prime ideals P of R.
(b) Show that the previous statement is false if M is not finitely generated.
2. Prove that a power of the polynomial $(x+y)\left(x^{2}+y^{4}-2\right)$ belongs to the ideal $\left(x^{3}+y^{2}, x^{3}+x y\right)$ in $\mathbb{C}[x, y]$.
3. Let G be a finite group with a cyclic Sylow 2-subgroup S.
(a) Show that $N_{G}(S)=C_{G}(S)$.
(b) Show that if $S \neq 1$, then G contains a normal subgroup of index 2 (hint: suppose that $n=[G: S]$, consider an appropriate homomorphism from G to S_{n}).
(c) Show that G has a normal subgroup N of odd order such that $G=$ $N S$.
4. Show that $\mathbb{Z}[\sqrt{5}]$ is not integrally closed in its quotient field.
5. Let $f(x)=x^{11}-5 \in \mathbb{Q}[x]$.
(a) Show that f is irreducible in $\mathbb{Q}[x]$.
(b) Let K be the splitting field of f over \mathbb{Q}. What is the Galois group of K / \mathbb{Q}.
(c) How many subfields L of K are there so such that $[K: L]=11$.
6. Suppose that R is a finite ring with 1 such that every unit of R has order dividing 24. Classify all such R.
