Algebra Exam January 2017

Show your work. Be as clear as possible. Do all problems.

- 1. Let R be a PID. Let M be an R-module.
 - (a) Show that if M is finitely generated, then M is cyclic if and only if M/PM is for all prime ideals P of R.
 - (b) Show that the previous statement is false if M is not finitely generated.
- 2. Prove that a power of the polynomial $(x + y)(x^2 + y^4 2)$ belongs to the ideal $(x^3 + y^2, x^3 + xy)$ in $\mathbb{C}[x, y]$.
- 3. Let G be a finite group with a cyclic Sylow 2-subgroup S.
 - (a) Show that $N_G(S) = C_G(S)$.
 - (b) Show that if $S \neq 1$, then G contains a normal subgroup of index 2 (hint: suppose that n = [G : S], consider an appropriate homomorphism from G to S_n).
 - (c) Show that G has a normal subgroup N of odd order such that G = NS.
- 4. Show that $\mathbb{Z}[\sqrt{5}]$ is not integrally closed in its quotient field.
- 5. Let $f(x) = x^{11} 5 \in \mathbb{Q}[x]$.
 - (a) Show that f is irreducible in $\mathbb{Q}[x]$.
 - (b) Let K be the splitting field of f over \mathbb{Q} . What is the Galois group of K/\mathbb{Q} .
 - (c) How many subfields L of K are there so such that [K:L] = 11.
- 6. Suppose that R is a finite ring with 1 such that every unit of R has order dividing 24. Classify all such R.