Numerical Analysis Screening Exam

Spring 2017

1. Let $A \in \mathbb{C}^{n \times n}$ and let $A_{j} \in \mathbb{C}^{n} j=1,2, \ldots, n$ be the $j^{\text {th }}$ column of A. Show that

$$
|\operatorname{det} A| \leq \prod_{j=1}^{n}\left\|A_{j}\right\|_{1}
$$

Hint: Let $D=\operatorname{diag}\left(\left\|A_{1}\right\|_{1},\left\|A_{2}\right\|_{1}, \ldots,\left\|A_{n}\right\|_{1}\right)$, and consider $\operatorname{det} B$, where $B=A D^{-1}$.
2. a) Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and let $A_{j} \in \mathbb{R}^{n} j=1,2, \ldots, n$ be the $j^{t h}$ column of A. Use Gram-Schmidt to show that $A=Q R$, where Q is orthogonal and R is upper triangular with $\left\|A_{j}\right\|_{2}^{2}=\sum_{i=1}^{j} R_{i, j}^{2} \quad j=1,2, \ldots, n$.
b) Given $A, Q, R \in \mathbb{R}^{n \times n}$ as in part (a) above with $A=Q R$, and given $b \in \mathbb{R}^{n}$, perform an operation count (of multiplications only) for solving the linear system $A x=b$.
3. Consider the constrained least squares problem:

$$
*\left\{\begin{array}{c}
\min _{x}| | A x-b \|_{2} \\
\text { subject to } C x=d
\end{array}\right.
$$

where the $m \times n$ matrix A, the $p \times n$ matrix C, and the vectors $b \in \mathbb{R}^{m}$ and $d \in \mathbb{R}^{p}$ are given.
a) Show that the unconstrained least squares problem

$$
\min _{x}\|A x-b\|_{2}
$$

is a special case of the constrained least squares problem *.
b) Show that the minimum norm problem

$$
\left\{\begin{array}{c}
\min _{x}\|x\|_{2} \\
\text { subject to } C x=d
\end{array}\right.
$$

is a special case of the constrained least squares problem *.
c) By writing $x=x_{0}+N z$, show that solving the constrained least squares problem * is equivalent to solving an unconstrained least squares problem

$$
{ }^{* *} \min _{z}| | \tilde{A} z-\tilde{b} \|_{2}
$$

What are the matrices N and \tilde{A} and vectors x_{0} and \tilde{b} ?
d) Use part c) to solve the constrained least squares problem * where

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 4 & 3 \\
0 & 0 & 2 \\
1 & 2 & 4 \\
0 & 0 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
3 \\
3 \\
2 \\
2 \\
1
\end{array}\right], \quad C=\left[\begin{array}{ccc}
4 & 16 & 12 \\
-2 & -8 & -6 \\
1 & 4 & 3 \\
-1 & -4 & -3
\end{array}\right], \quad d=\left[\begin{array}{c}
12 \\
-6 \\
3 \\
-3
\end{array}\right]
$$

4. Consider a stationary iteration method for solving a system of linear equations $A x=$ b given by

$$
y^{k}=x^{k}+\omega_{0}\left(b-A x^{k}\right), \quad x^{k+1}=y^{k}+\omega_{1}\left(b-A y^{k}\right)
$$

a) Show that the matrix B defined by $x^{k+1}=B x^{k}+c$ has the form $B=\mu p(A)$ where $p(\lambda)$ is a second order polynomial in λ with leading coefficient equal to 1.
b) Show that the scaled Chebyshev polynomial $T_{2}(\lambda)=\lambda^{2}-1 / 2$ has the property that

$$
\frac{1}{2}=\max _{-1 \leq \lambda \leq 1}\left|T_{2}(\lambda)\right| \leq \max _{-1 \leq \lambda \leq 1}|q(\lambda)|
$$

for all second order polynomial q with leading coefficient 1.
c) If we know that matrix A is Hermitian with eigenvalues in ($-1,1$), find coefficients ω_{0} and ω_{1} such that the proposed iterative scheme converges for any initial vector x^{0}.
d) What could you do if the eigenvalues of the matrix A is in (α, β) to make the scheme convergent?

