Numerical Analysis Screening Exam Spring 2017

1. Let $A \in \mathbb{C}^{n \times n}$ and let $A_j \in \mathbb{C}^n$ j = 1, 2, ..., n be the j^{th} column of A. Show that

$$\left|\det A\right| \leq \prod_{j=1}^{n} \left\|A_{j}\right\|_{1}.$$

Hint: Let $D = diag(||A_1||_1, ||A_2||_1, ..., ||A_n||_1)$, and consider det *B*, where $B = AD^{-1}$.

2. a) Let $A \in \mathbb{R}^{n \times n}$ be nonsingular and let $A_j \in \mathbb{R}^n$ j = 1, 2, ..., n be the j^{th} column of A. Use Gram-Schmidt to show that A = QR, where Q is orthogonal and R is upper triangular with $||A_j||_2^2 = \sum_{i=1}^j R_{i,j}^2$ j = 1, 2, ..., n.

b) Given $A, Q, R \in \mathbb{R}^{n \times n}$ as in part (a) above with A = QR, and given $b \in \mathbb{R}^n$, perform an operation count (of multiplications only) for solving the linear system Ax = b.

3. Consider the constrained least squares problem:

$$* \begin{cases} \min_{x} ||Ax - b||_{2} \\ subject \ to \ Cx = d \end{cases}$$

where the $m \times n$ matrix A, the $p \times n$ matrix C, and the vectors $b \in \mathbb{R}^m$ and $d \in \mathbb{R}^p$ are given.

a) Show that the unconstrained least squares problem

$$\min_{x} ||Ax - b||_2$$

is a special case of the constrained least squares problem *.

b) Show that the minimum norm problem

is a special case of the constrained least squares problem *.

c) By writing $x = x_0 + Nz$, show that solving the constrained least squares problem * is equivalent to solving an unconstrained least squares problem

** min
$$||Az - b||_2$$
 .

What are the matrices N and \tilde{A} and vectors x_0 and \tilde{b} ?

d) Use part c) to solve the constrained least squares problem * where

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 4 & 3 \\ 0 & 0 & 2 \\ 1 & 2 & 4 \\ 0 & 0 & 1 \end{bmatrix}, \qquad b = \begin{bmatrix} 3 \\ 3 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 4 & 16 & 12 \\ -2 & -8 & -6 \\ 1 & 4 & 3 \\ -1 & -4 & -3 \end{bmatrix}, \qquad d = \begin{bmatrix} 12 \\ -6 \\ 3 \\ -3 \end{bmatrix}$$

4. Consider a stationary iteration method for solving a system of linear equations Ax =b given by

- $y^{k} = x^{k} + \omega_{0}(b Ax^{k}), \qquad x^{k+1} = y^{k} + \omega_{1}(b Ay^{k}).$ a) Show that the matrix *B* defined by $x^{k+1} = Bx^{k} + c$ has the form $B = \mu p(A)$ where $p(\lambda)$ is a second order polynomial in λ with leading coefficient equal to 1.
- b) Show that the scaled Chebyshev polynomial $T_2(\lambda) = \lambda^2 1/2$ has the property that

$$\frac{1}{2} = \max_{-1 \le \lambda \le 1} |T_2(\lambda)| \le \max_{-1 \le \lambda \le 1} |q(\lambda)|$$

for all second order polynomial *q* with leading coefficient 1.

- c) If we know that matrix A is Hermitian with eigenvalues in (-1, 1), find coefficients ω_0 and ω_1 such that the proposed iterative scheme converges for any initial vector x^0 .
- d) What could you do if the eigenvalues of the matrix A is in (α, β) to make the scheme convergent?