DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2016

Each problem is worth 10 points. There are seven problems.

1. Find the stationary points and analyze their behavior as r varies from -1 to 1 . Also determine the stability of each fixed point for each r.

$$
\begin{aligned}
x^{\prime} & =r x-x^{3}-y^{2}-a x y^{3} \\
y^{\prime} & =-y-x^{2} y^{3}
\end{aligned}
$$

If there is a bifurcation then draw a bifurcation diagram.
2. Given the ODE

$$
\frac{d^{2} x}{d t^{2}}+x+x^{3}=0
$$

choose the correct answer and prove it is correct:

- There exists a solution that $\rightarrow 0$ as $t \rightarrow \infty$.
- All non identically zero solutions are bounded and bounded away from zero,
- There exists a solution that $\rightarrow \infty$ as $t \rightarrow \infty$.

3. Show that the planar system

$$
\begin{aligned}
x^{\prime} & =x y^{2}+y^{4}+x^{3} \\
y^{\prime} & =x^{2} y+2 y^{5},
\end{aligned}
$$

can have no periodic orbits in \mathbb{R}^{2} other than the trivial one at $(0,0)$.
4. Let

$$
u(x)=\log \log \left(1+\frac{1}{|x|}\right) .
$$

Show that u is unbounded and that it is an element of the Sobolev space $H^{1}(B(0,1))$, where $B(0,1)$ is the unit ball in \mathbb{R}^{2}.
5. Let Ω be a bounded open set of \mathbb{R}^{n} with a smooth boundary $\partial \Omega$ and let $f: \mathbb{R} \mapsto \mathbb{R}$ be a function such that its derivative is bounded $\left(\left|f^{\prime}\right| \leq K\right)$ and $f(0)=0$. Assume that u is a C^{2} solution of

$$
\begin{array}{cc}
\partial_{t} u-\Delta u=f(u) & \text { in } \Omega \times(0, \infty), \\
u(x, t)=0 & \text { on } \partial \Omega \times(0, \infty) .
\end{array}
$$

(i) Show that if $u(x, 0) \geq 0$ for all $x \in \Omega$ then $u(x, t) \geq 0$ for all $x \in \Omega$ and all $t>0$.
(ii) Show that if $u(x, 0) \leq M$ for all $x \in \Omega$ then $u(x, t) \leq M e^{K t}$ for all $x \in \Omega$ and all $t>0$.
6. Consider the initial value problem

$$
\begin{equation*}
u_{t}+u u_{x}+u=0, \quad-\infty<x<\infty, t>0 \tag{B}
\end{equation*}
$$

subject to the initial condition $u(x, 0)=a \sin x$.
(i) Find the characteristic curves associated with the equation (B) in an explicit form.
(ii) Show that if $a>1$, then there exists a time $t=t(a)$ such that there exists no smooth solution (C^{1} in both space and time) of the equation (B) for $t>t(a)$. Find the maximal time of smoothness, $t(a)$.
7. Find the solution in the first quadrant $x>0$ and $t>0$ of the Wave equation with boundary condition at $x=0$,

$$
\begin{array}{r}
u_{t t}-c^{2} u_{x x}=0, \quad x>0, \quad t>0, \\
u(0, x)=f(x), \quad u_{t}(0, x)=g(x), \\
u_{t}(t, 0)=a u_{x}(t, 0), \quad a \neq-c,
\end{array}
$$

where $f(x)$ and $g(x)$ are C^{2} functions which vanish near $x=0$. Show that no solution exists in general if $a=-c$.

