Algebra Exam February 2016

Show your work. Be as clear as possible. Do all problems.

- 1. Let R be a Noetherian commutative ring with 1 and $I \neq 0$ an ideal of R. Show that there exist finitely many nonzero prime ideals P_i of R (not necessarily distinct) so that $\prod_i P_i \subset I$ (Hint: consider the set of ideals which are not of that form).
- 2. Describe all groups of order 130: show that every such group is isomorphic to a direct sum of dihedral and cyclic groups of suitable orders.
- 3. Let $f(x) = x^{12} + 2x^6 2x^3 + 2 \in \mathbb{Q}[x]$. Show f(x) is irreducible. Let K be the splitting field of f(x) over \mathbb{Q} . Determine whether $\operatorname{Gal}(K/Q)$ is solvable.
- 4. Determine up to isomorphism the algebra structure of $\mathbb{C}[G]$ where $G = S_3$ is the symmetric group of degree 3 (Recall that $\mathbb{C}[G]$ is the group algebra of G which has basis G and the multiplication comes from the multiplication on G).
- 5. If F is a field and n > 1 show that for any nonconstant $g \in F[x_1, \ldots, x_n]$ the ideal $gF[x_1, \ldots, x_n]$ is not a maximal ideal of $F[x_1, \ldots, x_n]$.
- 6. Let F be a field and let P be a submodule of $F[x]^n$. Suppose that the quotient module $M := F[x]^n/P$ is Artinian. Show that M is finite dimensional over F.