Algebra Exam February 2016

Show your work. Be as clear as possible. Do all problems.

1. Let R be a Noetherian commutative ring with 1 and $I \neq 0$ an ideal of R. Show that there exist finitely many nonzero prime ideals P_{i} of R (not necessarily distinct) so that $\Pi_{i} P_{i} \subset I$ (Hint: consider the set of ideals which are not of that form).
2. Describe all groups of order 130: show that every such group is isomorphic to a direct sum of dihedral and cyclic groups of suitable orders.
3. Let $f(x)=x^{12}+2 x^{6}-2 x^{3}+2 \in \mathbb{Q}[x]$. Show $f(x)$ is irreducible. Let K be the splitting field of $f(x)$ over \mathbb{Q}. Determine whether $\operatorname{Gal}(K / Q)$ is solvable.
4. Determine up to isomorphism the algebra structure of $\mathbb{C}[G]$ where $G=S_{3}$ is the symmetric group of degree 3 (Recall that $\mathbb{C}[G]$ is the group algebra of G which has basis G and the multiplication comes from the multiplication on G).
5. If F is a field and $n>1$ show that for any nonconstant $g \in F\left[x_{1}, \ldots, x_{n}\right]$ the ideal $g F\left[x_{1}, \ldots, x_{n}\right]$ is not a maximal ideal of $F\left[x_{1}, \ldots, x_{n}\right]$.
6. Let F be a field and let P be a submodule of $F[x]^{n}$. Suppose that the quotient module $M:=F[x]^{n} / P$ is Artinian. Show that M is finite dimensional over F.
