Spring 2015 Math 541a Exam

- 1. For $n \ge 2$ let X_1, \dots, X_n be independent samples from P_{θ} , the uniform distribution $U(\theta, \theta + 1), \theta \in \mathbb{R}$. Let $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$ be the order statistics of the sample.
 - (a) Show that $(X_{(1)}, X_{(n)})$ is a sufficient statistic for θ .
 - (b) Is $(X_{(1)}, X_{(n)})$ complete? Prove your claim.
 - (c) Find a_n and $b(\theta)$ such that $a_n(b(\theta) X_{(n)}) \to Z$ in distribution, where Z has an exponential distribution with density $f(x) = e^{-x}, x > 0$.
 - (d) What is the maximum likelihood estimate of θ given the sample?
- 2. Let X and Y be independent random variables with $X \sim \text{exponential}(\lambda)$ and $Y \sim \text{exponential}(\mu)$, where the exponential(ν) density is given by

$$f(x;\nu) = \frac{1}{\nu} \exp\left(-\frac{x}{\nu}\right).$$

Let

$$Z = \min\{X, Y\},\$$

and

$$W = 1$$
 if $Z = X$, and $W = 0$ otherwise.

- (a) Find the joint distribution of Z and W.
- (b) Prove that Z and W are independent.
- (c) Suppose that (X, Y) are not observable. Instead, with $n \ge 2$, we observe $(Z_1, W_1), \dots, (Z_n, W_n)$, independent samples distributed as (Z, W). Write down the likelihood function in terms of the sample averages $(\overline{Z}, \overline{W})$, and find the maximum likelihood estimate $(\widehat{\mu}_n, \widehat{\lambda}_n)$ of (μ, λ) .
- (d) Determining whether $1/\lambda_n$ is unbiased for $1/\lambda$, and if not, construct an estimator that is.