Exam in Numerical Analysis Spring 2015

Instructions The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems.

1. Linear systems

Consider the symmetric positive definite (spd) $n \times n$ matrix A and its LU-decomposition $A=L U$ with $l_{i i}=1, i=1,2, \ldots, n$.
a. Show that $u_{11}=a_{11}$, and $u_{k k}=\frac{\operatorname{det}\left(A_{k}\right)}{\operatorname{det}\left(A_{k-1}\right)}, k=2, \ldots, n$, where for each $k=1,2, \ldots, n, A_{k}$ is the $k \times k$ matrix formed by taking the intersection of the first krows and kcolumns of A.
b. Show that A can be written as $A=R^{T} R$ with R upper triangular with positive diagonal entries. (Hint: Let $D=\operatorname{diag}\left(u_{11}, u_{22}, \ldots, u_{n n}\right)$ and consider the identity $A=L D D^{-1} U$.)
c. Show how the decomposition found in part (b) suggests a scheme for solving the system $A x=b$ with A spd, that like Choleski's method requires only U, but that unlike Choleski's method, does not require the computation of square roots.

2. Least squares

Let $A \in R^{m \times n}, m \geq n$, be given.
(a) Show that the x-component of any solution of linear system

$$
\left(\begin{array}{cc}
I_{m} & A \tag{1}\\
A^{T} & 0
\end{array}\right)\binom{r}{x}=\binom{b}{0}
$$

is a solution of the minimization problem

$$
\begin{equation*}
\min _{x}\|b-A x\|_{2} . \tag{2}
\end{equation*}
$$

(b) Show that the solution of the linear system (1) is unique if and only if the solution of the least squares problem (2) is unique.

3. Iterative Methods

Let A be an $n \times n$ nonsingular matrix and consider the matrix iteration

$$
X_{k+1}=X_{k}+X_{k}\left(I-A X_{k}\right),
$$

with X_{0} given. Find and justify necessary and sufficient conditions on A and X_{0} for this iteration to converge to A^{-1}.

4. Computation of Eigenvalues and Eigenvectors

Consider the matrices A and T given by

$$
A=\left[\begin{array}{ccc}
3 & \alpha & \beta \\
-1 & 7 & -1 \\
0 & 0 & 5
\end{array}\right] \quad \text { and } \quad T=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1 / 4
\end{array}\right]
$$

where $|\alpha|,|\beta| \leq 1$.
(a) Use the similarity transform $T^{-1} A T$ to show that the matrix A has at least two distinct eigenvalues. (Hint: Gershgorin's Theorem)
(b) In the case $\alpha=\beta=1$ verify that $x=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ is an eigenvector of A and find a unitary matrix U such that the matrix $U^{T} A U$ has the form

$$
\left[\begin{array}{lll}
* & * & * \\
0 & * & * \\
0 & * & *
\end{array}\right]
$$

(c) Explain, without actually calculating, how one could find a Schur decomposition of A.

