DIFFERENTIAL EQUATIONS QUALIFYING EXAM-Spring 2015

1. Consider the initial value problem for the one dimensional wave equation

$$
\begin{cases}u_{t t}-u_{x x}=0 & \text { in } \mathbb{R} \times(0, \infty) \\ u=g, u_{t}=h & \text { on } \mathbb{R} \times\{t=0\}\end{cases}
$$

Prove that if $g \in C^{k}$ and $h \in C^{k-1}$, then $u \in C^{k}$, but not in general smoother.
2. Consider the Euler equations for the flow of a constant density, inviscid fluid in three dimensions:

$$
\frac{\partial u}{\partial t}+(u \cdot \nabla) u=-\nabla P ; \quad \nabla \cdot u=0
$$

where the vector $u(x, t)$ is the fluid velocity and the scalar $P(x, t)$ is the pressure.
Let $(\bar{u}(x), \bar{P}(x))$ be a stationary solution of the system (steady flow). Prove that the quantity

$$
H=\bar{P}+\frac{1}{2} \bar{u}^{2}
$$

is constant along the curves $d x / d t=\bar{u}(x)$.
3. Let $f(r)=r^{5}-4 r^{3}$. Show that if u is a solution of the problem

$$
\left\{\begin{array}{l}
\Delta u=f(u) \text { in } U \\
u=0 \text { on } \partial U
\end{array}\right.
$$

where U is a bounded open subset of \mathbb{R}^{n}, then necessarily $|u(x)|<2$ throughout U.
4. Show that all solutions of

$$
u^{\prime \prime}+4 u+3 u^{5}=0
$$

are bounded. If $u(0)=1$ and $u^{\prime}(0)=2$ give a sharp bound on $u^{\prime}(t)$, i.e. the least upper bound for $\left|u^{\prime}(t)\right|$.
5. Consider the system of ODE's,

$$
\begin{aligned}
x_{1}^{\prime} & =-x_{1}-x_{1} x_{2}^{2}, \\
x_{2}^{\prime} & =\mu x_{2}-2 x_{3}-x_{2}\left(x_{2}^{2}+x_{3}^{2}\right), \\
x_{3}^{\prime} & =2 x_{2}+\mu x_{3}-x_{3}\left(x_{2}^{2}+x_{3}^{2}\right) .
\end{aligned}
$$

Ler S be the set of initial conditions close to the origin whose solutions approach the origin as $t \rightarrow \infty$. (1) For $\mu=1$ determine the dimension of S. (2) Describe the qualitative change that takes place when μ is varied continuously from -1 to +1 .
6. Consider the periodic system with period T,

$$
x^{\prime}=A(t) x, \quad A(t+T)=A(t)
$$

Show there is a solution $\phi(t)$ and a constant λ such that $\phi(T)=\lambda \phi(0)$.

